Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multimodal data fusion has shown great advantages in uncovering information that could be overlooked by using single modality. In this paper, we consider the integration of high-dimensional and data for Alzheimer's disease (AD) diagnosis. With a focus on taking advantage of both phenotype and genotype information, a novel structured sparsity, defined by -norm ( > 1), regularized multiple kernel learning method is designed. Specifically, to facilitate structured feature selection and fusion from heterogeneous modalities and also capture feature-wise importance, we represent each feature with a distinct kernel as a basis, followed by grouping the kernels according to modalities. Then, an optimally combined kernel presentation of multimodal features is learned in a data-driven approach. Contrary to the Group Lasso (i.e., -norm penalty) which performs sparse group selection, the proposed regularizer enforced on kernel weights is to select concise feature set within each homogenous group and fuse the heterogeneous feature groups by taking advantage of dense norms. We have evaluated our method using data of subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The effectiveness of the method is demonstrated by the clearly improved prediction diagnosis and also the discovered brain regions and SNPs relevant to AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410562 | PMC |
http://dx.doi.org/10.1016/j.patcog.2018.11.027 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!