AI Article Synopsis

Article Abstract

Considerable gap in knowledge exists about the mechanisms by which oral tumors regulate peripheral sensory fibers to produce pain and altered sensations. To address this gap, we used a murine model of oral squamous cell carcinoma (OSCC) of the tongue to investigate changes in response properties of trigeminal afferent neurons. Using this model, we developed an ex vivo method for single neuron recordings of the lingual nerve from isolated tongue tissue. Our data demonstrated that the tongue tumor produced increased spontaneous firing of lingual fibers compared to control as well as produced mechanical hypersensitivity and reduced von Frey thresholds of C- and A-slow-high-threshold mechanoreceptors (HTMR) fibers but had no effect on C-LTMR, A-slow-LTMR and A-fast lingual fibers. Mechanically-insensitive fibers were also detected in lingual afferents of the control group, that were significantly decreased in tumor-bearing preparations. Collectively, using single fiber electrophysiology of lingual sensory fibers, we show that human OSCC tumors sensitize peripheral trigeminal nerve terminals, providing a unique opportunity to study mechanisms of oral cancer pain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418205PMC
http://dx.doi.org/10.1038/s41598-019-39824-9DOI Listing

Publication Analysis

Top Keywords

trigeminal afferent
8
mechanisms oral
8
sensory fibers
8
lingual fibers
8
fibers
6
lingual
5
depiction oral
4
oral tumor-induced
4
tumor-induced trigeminal
4
afferent responses
4

Similar Publications

The parabrachial nucleus (PB), located in the dorsolateral pons, contains primarily glutamatergic neurons that regulate responses to a variety of interoceptive and cutaneous sensory signals. One lateral PB subpopulation expresses the Calca gene, which codes for the neuropeptide calcitonin gene-related peptide (CGRP). These PB neurons relay signals related to threatening stimuli such as hypercarbia, pain, and nausea, yet their inputs and their neurochemical identity are only partially understood.

View Article and Find Full Text PDF

Local Administration of (-)-Epigallocatechin-3-Gallate as a Local Anesthetic Agent Inhibits the Excitability of Rat Nociceptive Primary Sensory Neurons.

Cells

January 2025

Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan.

While the impact of (-)-epigallocatechin-3-gallate (EGCG) on modulating nociceptive secondary neuron activity has been documented, it is still unknown how EGCG affects the excitability of nociceptive primary neurons in vivo. The objective of the current study was to investigate whether administering EGCG locally in rats reduces the excitability of nociceptive primary trigeminal ganglion (TG) neurons in response to mechanical stimulation in vivo. In anesthetized rats, TG neuronal extracellular single unit recordings were made in response to both non-noxious and noxious mechanical stimuli.

View Article and Find Full Text PDF

Neuropeptides: The Evergreen Jack-of-All-Trades in Neuronal Circuit Development and Regulation.

Bioessays

December 2024

Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria.

Neuropeptides are key modulators of adult neurocircuits, balancing their sensitivity to both excitation and inhibition, and fine-tuning fast neurotransmitter action under physiological conditions. Here, we reason that transient increases in neuropeptide availability and action exist during brain development for synapse maturation, selection, and maintenance. We discuss fundamental concepts of neuropeptide signaling at G protein-coupled receptors (GPCRs), with a particular focus on how signaling at neuropeptide GPCRs could underpin neuronal morphogenesis.

View Article and Find Full Text PDF

Temporomandibular disorder (TMD) is the most prevalent painful condition in the craniofacial area. Recent studies have suggested that external or intrinsic trauma to the temporomandibular joint (TMJ) is associated with the onset of painful TMD in patients. Here, we investigated the effects of TMJ trauma through forced-mouth opening (FMO) in mice to determine pain behaviors and peripheral sensitization of trigeminal nociceptors in both sexes.

View Article and Find Full Text PDF

A functional unbalance of TRPM8 and Kv1 channels underlies orofacial cold allodynia induced by peripheral nerve damage.

Front Pharmacol

December 2024

Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.

Cold allodynia is a debilitating symptom of orofacial neuropathic pain resulting from trigeminal nerve damage. The molecular and neural bases of this sensory alteration are still poorly understood. Here, using chronic constriction injury (CCI) of the infraorbital nerve (IoN) (IoN-CCI) in mice, combined with behavioral analysis, Ca imaging and patch-clamp recordings of retrogradely labeled IoN neurons in culture, immunohistochemistry, and adeno-associated viral (AAV) vector-based delivery , we explored the mechanisms underlying the altered orofacial cold sensitivity resulting from axonal damage in this trigeminal branch.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!