AI Article Synopsis

  • Researchers tackled the issue of quickly identifying bacterial pathogens in infectious diseases by creating a new molecular method that uses ribosomal RNA for rapid detection without needing complicated amplification processes.
  • The developed assay demonstrated over 89% accuracy in identifying specific bacterial species and 100% accuracy at the family level from a diverse group of 117 bacterial isolates.
  • Initial tests using clinical samples like sputum and blood cultures effectively identified bacteria from five different phyla, showcasing its practical application in real-world situations.

Article Abstract

Rapid bacterial identification remains a critical challenge in infectious disease diagnostics. We developed a novel molecular approach to detect and identify a wide diversity of bacterial pathogens in a single, simple assay, exploiting the conservation, abundance, and rich phylogenetic content of ribosomal RNA in a rapid fluorescent hybridization assay that requires no amplification or enzymology. Of 117 isolates from 64 species across 4 phyla, this assay identified bacteria with >89% accuracy at the species level and 100% accuracy at the family level, enabling all critical clinical distinctions. In pilot studies on primary clinical specimens, including sputum, blood cultures, and pus, bacteria from 5 different phyla were identified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6418090PMC
http://dx.doi.org/10.1038/s41598-019-40792-3DOI Listing

Publication Analysis

Top Keywords

bacterial pathogens
8
hybridization assay
8
ribosomal rna
8
rna rapid
8
rapid identification
4
identification phylogenetic
4
phylogenetic classification
4
classification diverse
4
diverse bacterial
4
pathogens multiplexed
4

Similar Publications

Determination of antimicrobial susceptibility and virulence-related genes of Trueperella pyogenes strains isolated from various clinical specimens in animals.

Pol J Vet Sci

June 2024

Department of Surgery, Faculty of Veterinary Medicine, University of Siirt, Kezer Campus, Veysel Karani District, University Street, Siirt/Türkiye.

In this study, a total of 32 Trueperella pyogenes strains isolated from different disease specimens in cattle, sheep and goats were examined. Antimicrobial susceptibility of the isolates to 10 antimicrobials were determined using the E-test method and MIC values of the antimicrobials were investigated. The genes that play a role in the antimicrobial resistance or virulence of T.

View Article and Find Full Text PDF

Virulence profiling of Campylobacter spp., C. jejuni and C. fetus subsp. fetus abortions rise in sheep farms in Kashmir, India.

Pol J Vet Sci

June 2024

Campylobacter Laboratory; Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shuhama (Aulesteng)-19006, Jammu and Kashmir, India.

Campylobacter spp. are the leading causes of ovine abortions leading to severe economic losses and a source of bacterial food borne illness in humans, posing a major public health concern. This study reports an increase in Brucella negative abortions in sheep farms in Kashmir, India in the last few years.

View Article and Find Full Text PDF

, commonly known as , is a critical zoonotic pathogen that significantly reduces milk yield and product quality and poses a significant risk to public health. Although is increasingly recognised as a principal agent causing milkborne infections, research dedicated to this pathogen in dairy cattle has been less extensive than that of other pathogens. This study aimed to examine the antibiotic resistance profiles of derived from dairy cows and assess its pathogenicity using validated in vivo models.

View Article and Find Full Text PDF

Detection and Molecular Characterization of from Wastewater Environments in Two University Campuses in Nigeria.

Front Biosci (Elite Ed)

December 2024

Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, 4000 Durban, South Africa.

Background: () is the most prominent bacterial pathogen that causes urinary tract infections (UTIs), and the rate of resistance to most used antibiotics is alarmingly increasing.

Methods: This study assessed the hostel gutters of two Nigerian universities, the University of Nigeria, Nsukka (UNN) and Kogi State University, Anyigba (KSU), for and its antimicrobial resistance genes (). Oxoid Chromogenic UTI agar was used to isolate uropathogenic (UPEC), identified using standard biochemical tests.

View Article and Find Full Text PDF

Since infections associated with microbial communities threaten human health, research is increasingly focusing on the development of biofilms and strategies to combat them. Bacterial communities may include bacteria of one or several species. Therefore, examining all the microbes and identifying individual community bacteria responsible for the infectious process is important.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!