This paper proposes a novel approach for online, individualized gait analysis, based on an adaptive periodic model of any gait signal. The proposed method learns a model of the gait cycle during online measurement, using a continuous representation that can adapt to inter- and intra-personal variability by creating an individualized model. Once the algorithm has converged to the input signal, key gait events can be identified based on the estimated gait phase and amplitude. The approach is implemented and tested on retirement home resident 6 min walk (6MW) data using wearable accelerometers at the ankle. The proposed approach converges within approximately four gait cycles and achieves 3% error in detecting initial swing events.11 An early version of this work was presented in [1]. A more extensive description of related work and an extended method, including optimization of learning rates, were added to this paper. Further, this paper applies and evaluates the method to a new and much larger gait dataset taken from older adults who each have a variety of medical conditions. Therefore, the experimental protocol was also updated and the results are entirely novel.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2019.2904477DOI Listing

Publication Analysis

Top Keywords

gait
8
model gait
8
online learning
4
learning gait
4
gait models
4
models older
4
older adult
4
adult data
4
data paper
4
paper proposes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!