Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The number of publicly available metagenomic experiments in various environments has been rapidly growing, empowering the potential to identify similar shifts in species abundance between different experiments. This could be a potentially powerful way to interpret new experiments, by identifying common themes and causes behind changes in species abundance.
Results: We propose a novel framework for comparing microbial shifts between conditions. Using data from one of the largest human metagenome projects to date, the American Gut Project (AGP), we obtain differential abundance vectors for microbes using experimental condition information provided with the AGP metadata, such as patient age, dietary habits, or health status. We show it can be used to identify similar and opposing shifts in microbial species, and infer putative interactions between microbes. Our results show that groups of shifts with similar effects on microbiome can be identified and that similar dietary interventions display similar microbial abundance shifts.
Conclusions: Without comparison to prior data, it is difficult for experimentalists to know if their observed changes in species abundance have been observed by others, both in their conditions and in others they would never consider comparable. Yet, this can be a very important contextual factor in interpreting the significance of a shift. We've proposed and tested an algorithmic solution to this problem, which also allows for comparing the metagenomic signature shifts between conditions in the existing body of data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6419333 | PMC |
http://dx.doi.org/10.1186/s12859-019-2623-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!