Regenerative Medicine: A Review of the Evolution of Autologous Chondrocyte Implantation (ACI) Therapy.

Bioengineering (Basel)

Institute for Science & Technology in Medicine (ISTM), Keele University, Newcastle ST5 5BG, UK.

Published: March 2019

Articular cartilage is composed of chondrons within a territorial matrix surrounded by a highly organized extracellular matrix comprising collagen II fibrils, proteoglycans, glycosaminoglycans, and non-collagenous proteins. Damaged articular cartilage has a limited potential for healing and untreated defects often progress to osteoarthritis. High hopes have been pinned on regenerative medicine strategies to meet the challenge of preventing progress to late osteoarthritis. One such strategy, autologous chondrocyte implantation (ACI), was first reported in 1994 as a treatment for deep focal articular cartilage defects. ACI has since evolved to become a worldwide well-established surgical technique. For ACI, chondrocytes are harvested from the lesser weight bearing edge of the joint by arthroscopy, their numbers expanded in monolayer culture for at least four weeks, and then re-implanted in the damaged region under a natural or synthetic membrane via an open joint procedure. We consider the evolution of ACI to become an established cell therapy, its current limitations, and on-going strategies to improve its efficacy. The most promising developments involving cells and natural or synthetic biomaterials will be highlighted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6466051PMC
http://dx.doi.org/10.3390/bioengineering6010022DOI Listing

Publication Analysis

Top Keywords

articular cartilage
12
regenerative medicine
8
autologous chondrocyte
8
chondrocyte implantation
8
implantation aci
8
natural synthetic
8
aci
5
medicine review
4
review evolution
4
evolution autologous
4

Similar Publications

Background: Osteoarthritis (OA) is the most prevalent joint disorder globally, causing a substantial and increasing socioeconomic burden. Kojic acid (KA) presented potential biological roles in regulating inflammation and autophagy, which was implicated in OA progression. However, its role in chondrocytes and OA has not been reported.

View Article and Find Full Text PDF

Bone marrow stimulation treatment by bone marrow stromal cells (BMSCs) released from the bone medullary cavity and differentiated into cartilage via microfracture surgery is a frequently employed technique for treating articular cartilage injuries, yet the treatment presents a main drawback of poor cartilage regeneration in the elderly. Prior research indicated that aging could decrease the stemness capacity of BMSCs, thus we made a hypothesis that increasing old BMSCs (OBMSCs) stemness might improve the results of microfracture in the elderly. First, we investigated the correlation between microfracture outcomes and BMSCs stemness using clinical data and animal experiments.

View Article and Find Full Text PDF

Background: Meniscal injuries that fail to heal instigate catabolic changes in the knee's microenvironment, posing a high risk for developing posttraumatic osteoarthritis (PTOA). Previous research has suggested that human cartilage-derived progenitor cells (hCPCs) can stimulate meniscal repair in a manner that depends on stromal cell-derived factor 1 (SDF-1) pathway activity.

Hypothesis: Overexpressing the SDF-1 receptor CXCR4 in hCPCs will increase cell trafficking and further improve the repair efficacy of meniscal injuries.

View Article and Find Full Text PDF

Advancements in Cartilage Tissue Engineering: A Focused Review.

J Biomed Mater Res B Appl Biomater

January 2025

Department of Mechanical Engineering, Cleveland State University, Cleveland, Ohio, USA.

Osteoarthritis (OA) is a prevalent joint disorder that is characterized by the degeneration of articular cartilage in synovial joints. Most of the current treatment options for this disorder tend to focus on symptom management rather than addressing the underlying progression of the disease. Cartilage tissue engineering has emerged as a promising approach to address the limitations of current OA treatments, aiming to regenerate cartilage and restore the natural function of affected joints.

View Article and Find Full Text PDF
Article Synopsis
  • Knee osteoarthritis (OA) is a slow progression of cartilage damage leading to pain and difficulties in movement, with standard pain medications not effective for everyone.
  • A systematic review analyzed 10 studies from 2016-2023 on the use of platelet-rich plasma (PRP) injections for reducing OA pain compared to a placebo.
  • While some studies showed significant improvement in symptoms for PRP-treated patients, results were inconsistent, indicating the need for more research to clarify PRP's effectiveness and consider other factors like follow-up times and patient conditions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!