Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9 (CRISPR/Cas9) technology is a versatile and useful tool to perform genome editing in different organisms ranging from bacteria and yeast to plants and mammalian cells. For a couple of years, it was believed that the system was inefficient and toxic in the alga . However, recently the system has been successfully implemented in this model organism, albeit relying mostly on the electroporation of ribonucleoproteins (RNPs) into cell wall deficient strains. This requires a constant source of RNPs and limits the application of the technology to strains that are not necessarily the most relevant from a biotechnological point of view. Here, we show that transient expression of the Cas9 gene and sgRNAs, targeted to the single-copy nuclear gene, encoding an adenine phosphoribosyl transferase (), results in efficient disruption at the expected locus. Introduction of to the locus results in cell insensitivity to the otherwise toxic compound 2-fluoroadenine (2-FA). We have used agitation with glass beads and particle bombardment to introduce the plasmids carrying the coding sequences for Cas9 and the sgRNAs in a cell-walled strain of (CC-125). Using sgRNAs targeting exons 1 and 3 of , we obtained disruption efficiencies of 3 and 30% on preselected 2-FA resistant colonies, respectively. Our results show that transient expression of Cas9 and a sgRNA can be used for editing of the nuclear genome inexpensively and at high efficiency. Targeting of the gene could potentially be used as a pre-selection marker for multiplexed editing or disruption of genes of interest.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6429146 | PMC |
http://dx.doi.org/10.3390/ijms20051247 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!