Humic Substances (HS) from Leonardite and two different composts were used as biosurfactants to wash heavy metals (Cu, Pb, Zn, Cd, Cr) from a soil added with two metals concentrations and aged for 4 and 12 months. Composts were obtained by mixing manure with either 40 (CM-I) and 20 (CM-II) % of straw as structuring material. For both aging periods and both metal concentrations, HS from CM-I removed more metals than from Leonardite, whereas the washing capacity of HS from CM-II was negligible. C-CPMAS-NMR spectra of HS indicated that while aromatic moieties for CM-I and Leonardite were more abundant than CM-II, HS from CM-I was largest in carboxyl and phenolic carbons. Hence, HS from CM-I had a greater complexing capacity than from both Leonardite and CM-II and effectively displaced heavy metals from soil during the washing treatment. Moreover, the amount of metals removed by solutions of ammonium acetate (AA) and diethylenetriaminepentaacetic acid (DTPA), was found invariably smaller than by HS from CM-I, thereby indicating that HS removed more than one metal specie. The combined washing with HS from CM-I before and after soil treatment by either AA and DTPA revealed significant larger metal removals than by single solutions alone. This shows that humic soil washing also renders residual metals potentially more available to subsequent soil remediation approaches, such as phytoextraction. These results suggest a novel, efficient, and molecularly-based technology to remediate soils from heavy metals can be based on a low-cost and sustainable humic matter produced from recycled biomasses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.03.019DOI Listing

Publication Analysis

Top Keywords

soil washing
12
heavy metals
12
solutions humic
8
humic substances
8
metals soil
8
metals
7
cm-i
7
soil
6
humic
5
washing solutions
4

Similar Publications

Domestic laundry wastewater is a major contributor to microfiber emissions in the aquatic environment. Among several mitigation measures, the use of external filters to capture microfibers from wastewater is one of the most efficient and commercially viable methods. This study attempted to develop an eco-friendly filtration medium to filter microfibers in laundry wastewater using luffa cylindrica fibers.

View Article and Find Full Text PDF

The remediation of oil-contaminated soil poses significant environmental challenges, often necessitating innovative approaches for effective and sustainable solutions. This study focuses on the synthesis, characterisation, and application of biodegradable capsules loaded with surfactant for enhanced oil remediation of a clean sand. By controlling the release properties of capsules, the research aims to overcome the limitations of conventional surfactant-based remediation methods, such as rapid washout and reduced efficacy over time.

View Article and Find Full Text PDF

UiO-66 with missing cluster defects for high-efficient extraction and enrichment of benzoylurea insecticides.

J Chromatogr A

February 2025

Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China. Electronic address:

The creation of defects in crystalline structures can tune metal-organic frameworks (MOFs) properties, such as improving their adsorptive and catalytic performance with producing more porosity and active sites. In this work, the bimetallic UiO-66 containing Zn and Zr was prepared. And then UiO-66 with missing cluster defects (UiO-66-1/3) were obtained by acid washing to remove the Zn nodes.

View Article and Find Full Text PDF

The content of 39 metals and metalloids (MMs) in submicron road dust (PM fraction) was studied in the traffic zone, residential courtyards with parking lots, and on pedestrian roads in parks in Moscow. The geochemical profiles of PM vary slightly between different types of roads and courtyards but differ significantly from those in parks. In Moscow, compared to other cities worldwide, submicron road dust contains less As, Sb, Mo, Cr, Cd, Sn, Tl, Ca, Rb, La, Y, U, but more Cu, Zn, Co, Fe, Mn, Ti, Zr, Al, V.

View Article and Find Full Text PDF

Bioearth recovered from landfill mining of old dumpsites: a potential resource or reservoir of toxic pollutants.

Environ Sci Pollut Res Int

January 2025

Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai, 600 025, India.

Landfill biomining is indeed a promising eco-friendly approach to sustainably manage and reclaim old dumpsites. Soil like fractions of < 8-10 mm size, also known as bioearth or good earth constitute a substantial part of the legacy waste. Detailed characterization is necessary to meet regulatory standards for the safe use of bioearth and minimize its environmental and human health impacts upon reuse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!