Interaction of POPC, DPPC, and POPE with the μ opioid receptor: A coarse-grained molecular dynamics study.

PLoS One

Laboratoire de Physico-Chimie Informatique, Unité de Chimie Physique Théorique et Structurale, Namur Medecine and Drug Innovation Center (NAMEDIC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium.

Published: December 2019

The μ opioid receptor (μOR), which is part of the G protein-coupled receptors family, is a membrane protein that is modulated by its lipid environment. In the present work, we model μOR in three different membrane systems: POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine), POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine), and DPPC (1, 2-dipalmitoyl-sn-glycero-3-phosphocholine) through 45 μs molecular dynamics (MD) simulations at the coarse-grained level. Our theoretical studies provide new insights to the lipid-induced modulation of the receptor. Particularly, to characterize how μOR interacts with each lipid, we analyze the tilt of the protein, the number of contacts occurring between the lipids and each amino acid of the receptor, and the μOR-lipid interface described as a network graph. We also analyze the variations in the number and the nature of the protein contacts that are induced by the lipid structure. We show that POPC interacts preferentially with helix 1 (H1) and helices H5-H6, POPE, with H5-H6 and H6-H7, and DPPC, with H4 and H6. We demonstrate how each of the three lipids shape the structure of the μOR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417715PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213646PLOS

Publication Analysis

Top Keywords

opioid receptor
8
molecular dynamics
8
interaction popc
4
popc dppc
4
dppc pope
4
pope opioid
4
receptor
4
receptor coarse-grained
4
coarse-grained molecular
4
dynamics study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!