Towards predicting intracellular radiofrequency radiation effects.

PLoS One

Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark.

Published: December 2019

Recent experiments have reported an effect of weak radiofrequency magnetic fields in the MHz-range on the concentrations of reactive oxygen species (ROS) in living cells. Since the energy that could possibly be deposited by the radiation is orders of magnitude smaller than the energy of molecular thermal motion, it was suggested that the effect was caused by the interaction of RF magnetic fields with transient radical pairs within the cells, affecting the ROS formation rates through the radical pair mechanism. It is, however, at present not entirely clear how to predict RF magnetic field effects at certain field frequency and intensity in nanoscale biomolecular systems. We suggest a possible recipe for interpreting the radiofrequency effects in cells by presenting a general workflow for calculation of the reactive perturbations inside a cell as a function of RF magnetic field strength and frequency. To justify the workflow, we discuss the effects of radiofrequency magnetic fields on generic spin systems to particularly illustrate how the reactive radicals could be affected by specific parameters of the experiment. We finally argue that the suggested workflow can be used to predict effects of radiofrequency magnetic fields on radical pairs in biological cells, which is specially important for wireless recharging technologies where one has to know of any harmful effects that exposure to such radiation might cause.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417702PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213286PLOS

Publication Analysis

Top Keywords

magnetic fields
16
radiofrequency magnetic
12
radical pairs
8
magnetic field
8
effects radiofrequency
8
effects
6
magnetic
6
radiofrequency
5
predicting intracellular
4
intracellular radiofrequency
4

Similar Publications

Correlated spin-wave generation and domain-wall oscillation in a topologically textured magnetic film.

Nat Mater

January 2025

Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA.

Spin waves, or magnons, are essential for next-generation energy-efficient spintronics and magnonics. Yet, visualizing spin-wave dynamics at nanoscale and microwave frequencies remains a formidable challenge due to the lack of spin-sensitive, time-resolved microscopy. Here we report a breakthrough in imaging dipole-exchange spin waves in a ferromagnetic film owing to the development of laser-free ultrafast Lorentz electron microscopy, which is equipped with a microwave-mediated electron pulser for high spatiotemporal resolution.

View Article and Find Full Text PDF

This paper presents an in-depth analytical investigation into the time-dependent flow of a Casson hybrid nanofluid over a radially stretching sheet. The study introduces the effects of magnetic fields and thermal radiation, along with velocity and thermal slip, to model real-world systems for enhancing heat transfer in critical industrial applications. The hybrid nanofluid consists of three nanoparticles-Copper and Graphene Oxide-suspended in Kerosene Oil, selected for their stable and superior thermal properties.

View Article and Find Full Text PDF

The antiscale magnetic treatment (ASMT) claims to utilize magnetic field to combat scaling. However, its underlying mechanism, effectiveness, and reliability remain controversial. To address these contentious aspects, we analyze the influence of a magnetic field on the different stages of typical scale formation, using [Formula: see text] as a model scale.

View Article and Find Full Text PDF

Purpose: This study evaluates the effect of 6° horizontal gaze tolerance on visual field mean sensitivity (MS) in patients with glaucoma using a binocular head-mounted automated perimeter, following findings of structural changes in the posterior globe from magnetic resonance imaging and optical coherence tomography.

Methods: In this cross-sectional study, a total of 161 eyes (85 primary open-angle glaucoma [POAG] and 76 healthy) from 117 participants were included. Logistic regression and 1:1 matched analysis assessed the propensity score for glaucoma and healthy eyes, considering age, sex, and axial length as confounders.

View Article and Find Full Text PDF

Slipping motions of magnetic field lines are a distinct signature of three-dimensional magnetic reconnection, a fundamental process driving solar and stellar flares. While being a key prediction of numerical experiments, the rapid super-Alfvénic field line slippage driven by the 'slip-running' reconnection has remained elusive in previous observations. New frontiers into exploring transient flare phenomena were introduced by recently designed high cadence observing programs of the Interface Region Imaging Spectrograph (IRIS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!