Many problems in multiagent networks can be solved through distributed learning (state estimation) of linear dynamical systems. In this paper, we develop a partial-diffusion Kalman filtering (PDKF) algorithm, as a fully distributed solution for state estimation in the multiagent networks with limited communication resources. In the PDKF algorithm, every agent (node) is allowed to share only a subset of its intermediate estimate vectors with its neighbors at each iteration, reducing the amount of internode communications. We analyze the stability of the PDKF algorithm and show that the algorithm is stable and convergent in both mean and mean-square senses. We also derive a closed-form expression for the steady-state mean-square deviation criterion. Furthermore, we show theoretically and by numerical examples that the PDKF algorithm provides a trade-off between the estimation performance and the communication cost that is extremely profitable.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2019.2899052DOI Listing

Publication Analysis

Top Keywords

pdkf algorithm
16
state estimation
12
multiagent networks
12
kalman filtering
8
estimation multiagent
8
algorithm
5
partial diffusion
4
diffusion kalman
4
filtering distributed
4
distributed state
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!