A carbon-based solid acid, which functionalized with p-toluenesulfonic acid (TsOH), an encapsulated non-noble CuCo multifunctional heterogeneous catalyst was for the first time developed and used to catalyze the one-pot direct conversion of fructose into 2,5-dimethylfuran (2,5-DMF) without purification of 5-hydroxymethylfurfural (5-HMF) from the reaction solutions. Fructose was first transformed into intermediate 5-HMF over the outer shell carbon-based solid acid sites via dehydration, and subsequently 5-HMF was further converted to produce 2,5-DMF over the non-noble metal active sites in the core. As high as 71.1 mol % yield of 2,5-DMF was achieved in tetrahydrofuran at 220 °C and 3 MPa H for 10 h, which is higher than the yield reported for the direct conversion of fructose to 2,5-DMF. Besides, the carbon-based solid acid-coated CuCo catalyst could be reused up to five times.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b22183 | DOI Listing |
J Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018 China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China. Electronic address:
To boost supercapacitor (SC) energy density, we introduced redox-active molecules into an aqueous HSO electrolyte. Using retrosynthetic analysis, we identified aminoquinones, specifically triaminochlorobenzoquinone (TACBQ), as promising candidates. Characterization via elemental analysis, Fourier Transform Infrared Spectrometer (FT-IR), nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) confirmed structure of TACBQ.
View Article and Find Full Text PDFAdv Mater
January 2025
Michael Grätzel Center for Mesoscopic Solar Cells Wuhan National Laboratory for Optoelectronics Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
Carbon-based printable mesoscopic solar cells (p-MPSCs) offer significant advantages for industrialization due to their simple fabrication process, low cost, and scalability. Recently, the certified power conversion efficiency of p-MPSCs has exceeded 22%, drawing considerable attention from the community. However, the key challenge in improving device performance is achieving uniform and high-quality perovskite crystallization within the mesoporous structure.
View Article and Find Full Text PDFACS Nano
January 2025
College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, P. R. China.
Potassium metal batteries (KMBs) hold promise for stationary energy storage with certain cost and resource merits. Nevertheless, their practicability is greatly handicapped by dendrite-related anodes, and the target design of specialized separators to boost anode safety is in its nascent stage. Here, we develop a thermally robust biopolymeric separator customized via a solvent-exchange and amino-siloxane decoration strategy to render durable and safe KMBs.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
CAS Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
In the face of advancements in microrobotics, intelligent control and precision medicine, artificial muscle actuation systems must meet demands for precise control, high stability, environmental adaptability and high integration miniaturization. Carbon materials, being lightweight, strong and highly conductive and flexible, show great potential for artificial muscles. Inspired by the butterfly's proboscis, we have developed a carbon-based artificial muscle, hydrogen-substituted graphdiyne muscle (HsGDY-M), fabricated efficiently using an emerging hydrogen-substituted graphdiyne (HsGDY) film with an asymmetrical surface structure.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering and Architecture, Xinjiang University, Urumqi, 830017, Xinjiang, PR China.
In the framework of sustainable development and environmental preservation, this research aims to improve the stability and frost resistance of sulfate saline soil by utilizing industrial solid waste. Geopolymer materials containing fly ash (FA) activated by different NaOH concentrations were studied for study on stabilized soil with saline soil, with NaOH concentrations used ranged from 0.1 to 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!