[Application of DNA metabarcoding in species identification of Chinese herbal medicines].

Zhongguo Zhong Yao Za Zhi

Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica,China Academy of Chinese Medical Sciences Beijing 100700,China.

Published: January 2019

DNA metabarcoding,one rapid and robust method using specific standard DNA fragments,has been widely used for rapid species identification of a bulk sample through high-throughput sequencing technologies.While it has been widely used in the studies of metagenomics,animal and plant biodiversity,it has gradually come to be used as a profitable method in species identification of mixed Chinese herbal medicines.In this paper,we mainly summarize the current studies of the application of DNA metabarcoding in species identification of mixed Chinese herbal medicines.Moreover,high-throughput sequencing technologies adopted in those studies,such as Sanger,the next-generation,and third-generation sequencing technologies,are discussed.It is conducted to provide a theoretical guidance for the application of DNA metabarcoding in species identification of mixed Chinese herbal medicines and in more other biodiversity studies.

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.2019.0001DOI Listing

Publication Analysis

Top Keywords

species identification
20
chinese herbal
16
dna metabarcoding
12
metabarcoding species
12
identification mixed
12
mixed chinese
12
application dna
8
species
5
identification
5
[application dna
4

Similar Publications

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

New potential susceptibility factors contributing to tomato bacterial spot disease.

J Proteomics

January 2025

Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final CEP 70770917, Brazil. Electronic address:

The label-free shotgun proteomics analysis carried out in this study aimed to understand the molecular mechanisms that contribute towards tomato susceptibility to Xanthomonas euvesicatoria pv. perforans (Xep). To achieve this, comparative proteomics was performed on susceptible inoculated plants with the bacterium and the control group (saline solution) at 24 and 48 h after inoculation (hai).

View Article and Find Full Text PDF

Forensic characterization of Brazilian gemstones: A pilot study employing raman spectroscopy and multivariate analysis.

Forensic Sci Int

January 2025

Departamento de Química. Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, São Paulo CEP 14040-901, Brazil; Instituto Nacional de Ciência e Tecnologia Ciências Forenses (INCT-Forense), Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brasil; Programa de Cooperação Acadêmica - Segurança Pública e Ciências Forenses (PROCAD-SPCF), Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brasil. Electronic address:

Forensic gemstone analysis faces many challenges. One of the most critical aspects of gemological research is the classification of a gemstone. It is necessary to understand the mineral species, purity, origin, and identification of treatments to identify and classify a gem correctly, as well as assign a monetary value to it.

View Article and Find Full Text PDF

Fungal rhinosinusal infections comprise several nosological entities, including sinus fungus ball. Diagnosis of sinus fungus ball relies on patient interrogation and clinical and paraclinical findings. Mold species commonly involved include Aspergillus, as well as dematiaceous fungi.

View Article and Find Full Text PDF

The biotransformation of drugs by enzymes from the human microbiome can produce active or inactive products, impacting the bioactivity and function of these drugs inside the human host. However, understanding the biotransformation reactions of drug molecules catalyzed by bacterial enzymes in human microbiota is still limited. Hence, to characterize drug utilization capabilities across all the microbial phyla inside the human gut, we have used a knowledge-based approach to develop HgutMgene-Miner software which predicts xenobiotic metabolizing enzymes (XMEs) through genome mining.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!