Advances In Research On Genome Editing Crispr-Cas9 Technology.

J Ayub Med Coll Abbottabad

Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan.

Published: May 2019

Background: The current era of genome engineering has been revolutionized by the evolution of a bacterial adaptive immune system, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) into a radical technology that is making an expeditious progress in its mechanism, function and applicability..

Methods: A systematic literature review study was carried out with the help of all available information and online resources..

Results: In this review, we intend to elucidate different aspects of CRISPR in the light of current advancements. Utilizing a nonspecific Cas9 nuclease and a sequence specific programmable CRISPR RNA (crRNA), this system cleaves the target DNA with high precision. With a vast potential for profound implications, CRISPR has emerged as a mainstream method for plausible genomic manipulations in a range of organisms owing to its simplicity, accuracy and speed. A modified form of CRISPR system, known as CRISPR/Cpf1 that employs a smaller and simpler endonuclease (Cpf1) than Cas9, can be used to overcome certain limitations of CRISPR/Cas9 system. Despite clear-cut innovative biological applications, this technology is challenged by off-target effects and associated risks, thus safe and controlled implementation is needed to enable this emerging technique assist both biological research and translational applications.

Conclusions: CRISPR/Cas9 systems will undoubtedly revolutionize the study and treatment of both immunologic and allergic diseases. Concerned authorities should formulate and authorize such laws and regulations that permit the safe and ethical use of this emerging technology for basic research and clinical purposes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

crispr
5
advances genome
4
genome editing
4
editing crispr-cas9
4
technology
4
crispr-cas9 technology
4
technology background
4
background current
4
current era
4
era genome
4

Similar Publications

Exploiting the efficient Exo:Cas12i3-5M fusions for robust single and multiplex gene editing in rice.

J Integr Plant Biol

January 2025

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.

The development of a single and multiplex gene editing system is highly desirable for either functional genomics or pyramiding beneficial alleles in crop improvement. CRISPR/Cas12i3, which belongs to the Class II Type V-I Cas system, has attracted extensive attention recently due to its smaller protein size and less restricted canonical "TTN" protospacer adjacent motif (PAM). However, due to its relatively lower editing efficiency, Cas12i3-mediated multiplex gene editing has not yet been documented in plants.

View Article and Find Full Text PDF

We generated soybean mutants related to two ß-amyrin synthase genes using DNA-free site-directed mutagenesis system. Our results suggested that one of the genes is predominant in the soyasaponin biosynthesis. Soyasaponins, which are triterpenoid saponins contained in soybean [Glycine max (L.

View Article and Find Full Text PDF

Generation of novel bpm6 and dmr6 mutants with broad-spectrum resistance using a modified CRISPR/Cas9 system in Brassica oleracea.

J Integr Plant Biol

January 2025

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Using an optimized CRISPR/Cas9 system to knock out the BTB-POZ and MATH domain gene BoBPM6 and the DOWNY MILDEW RESISTANCE 6 gene in Brassica oleracea resulted in new lines with broad-spectrum disease resistance.

View Article and Find Full Text PDF

ERMP1 as a newly identified ER stress gatekeeper in chronic kidney disease.

Am J Physiol Renal Physiol

January 2025

Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.

ERMP1 is involved in the Unfolded Protein Response (UPR) pathway in response to endoplasmic reticulum (ER) stress. Given the pivotal role of ER stress in the pathogenesis of acute and chronic kidney diseases, we hypothesized that ERMP1 could be instrumental in the development of renal injury. analysis of RNA sequencing datasets from renal biopsies were exploited to assess the expression of ERMP1 in the kidney under normal or pathological conditions.

View Article and Find Full Text PDF

Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in the pentose phosphate pathway (PPP) in glycolysis. Glucose metabolism is closely implicated in the regulation of mitophagy, a selective form of autophagy for the degradation of damaged mitochondria. The PPP and its key enzymes such as G6PD possess important metabolic functions, including biosynthesis and maintenance of intracellular redox balance, while their implication in mitophagy is largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!