In severe forms of cerebral amyloid angiopathy (CAA) pathology, vascular calcification has been observed in the cerebral cortex, both in vivo on MRI and CT, and post-mortem using histopathology. However, the pathomechanisms leading to calcification of CAA-laden arteries are unknown. Therefore, we investigated the correlation between calcification of cortical arterioles and several potential modulators of vascular calcification using immunohistochemistry in a unique collection of brain material of patients with a hereditary form of CAA, namely hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D or D-CAA). We show a topographical association of osteopontin (OPN) and TGFβ signaling factor phospho-SMAD2/3 (pSMAD2/3) in calcified CAA vessel walls. OPN and pSMAD2/3 gradually accumulate in vessels prior to calcification. Moreover, we found that the vascular accumulation of Collagen 1 (Col1), OPN and pSMAD2/3 immunomarkers correlated with the CAA severity. This was independently of the vessel size, including capillaries in the most severe cases. We propose that calcification of CAA vessels in the observed HCHWA-D cases may be induced by extracellular OPN trapped in the fibrotic Col1 vessel wall, independently of the presence of vascular amyloid.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850614 | PMC |
http://dx.doi.org/10.1111/bpa.12721 | DOI Listing |
Hereditary spastic paraplegia (HSP) encompasses a group of rare genetic diseases primarily affecting motor neurons. Among these, spastic paraplegia type 11 (SPG11) represents a complex form of HSP caused by deleterious variants in the SPG11 gene, which encodes the spatacsin protein. Previous studies have described several potential roles for spatacsin, including its involvement in lysosome and autophagy mechanisms, neuronal and neurites development or mitochondria function.
View Article and Find Full Text PDFActa Neurol Belg
January 2025
Intensive Care Department, Cliniques Universitaire Saint-Luc (CUSL), Université Catholique de Louvain (UCL), Brussels, Belgium.
Osler-Weber-Rendu syndrome, or hereditary hemorrhagic telangiectasia (HHT), is a rare vascular disorder characterized by arteriovenous malformations (AVMs) in various organs, including the lungs. Pulmonary AVMs (PAVMs) are especially worrisome due to their potential to form right-to-left shunts, resulting in life-threatening complications such as paradoxical embolism and stroke . We present a case of fatal air embolism in a young patient with a known history of HHT and recurring hemoptysis.
View Article and Find Full Text PDFNat Med
January 2025
Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands.
Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.
View Article and Find Full Text PDFNeurogenetics
January 2025
Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
Huntington's disease (HDs) is a fatal, autosomal dominant, and hereditary neurodegenerative disorder characterized by progressive motor dysfunction, cognitive decline, and psychiatric disturbances. HD is well linked to mutation in the HTT gene, which leads to an abnormal expansion of trinucleotide CAG repeats, resulting in the production of the mHTT protein and responsible for abnormally long poly-Q tract. These abnormal proteins disrupt cellular processes, including neuroinflammation, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction, ultimately leading to selective neuronal loss in the brain.
View Article and Find Full Text PDFCurr Neurol Neurosci Rep
January 2025
Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montreal, QC, Canada.
Purpose Of Review: Autosomal dominant cerebellar ataxias, also known as spinocerebellar ataxias (SCAs), are genetically and clinically diverse neurodegenerative disorders characterized by progressive cerebellar dysfunction. Despite advances in sequencing technologies, a large proportion of patients with SCA still lack a definitive genetic diagnosis. The advent of advanced bioinformatic tools and emerging genomics technologies, such as long-read sequencing, offers an unparalleled opportunity to close the diagnostic gap for hereditary ataxias.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!