An antifouling electrochemical aptasensor for ATP is described that has a zwitterionic self-assembled sensing interface on a glassy carbon electrode modified with a reduced graphene oxide carbon nanofiber (GO-CNF). The GO-CNF was first modified by self-polymerization of dopamine which provided a platform for simultaneously self-assembly of the ATP aptamer and cysteine. By using hexacyanoferrate as the electrochemical probe, in the presence of ATP, the aptamer strands fold around ATP molecules, thus leading to the variation of the electrochemical signal. The aptasensor has a linear response in the 0.1 pM to 5 nM ATP concentration range, and a 13 fM lower detection limit. The electrode is strongly resistant to nonspecific adsorption and biofouling. This enabled the detection of ATP even in spiked human plasma. Graphical abstract An antifouling electrochemical aptasensor employing reduced graphene oxide carbon nanofiber as conductive substrate and zwitterionic cysteine as antifouling material for adenosine triphosphate detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-019-3343-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!