Intermittent plasticity in individual grains: A study using high energy x-ray diffraction.

Struct Dyn

Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA.

Published: January 2019

Long-standing evidence suggests that plasticity in metals may proceed in an intermittent fashion. While the documentation of intermittency in plastically deforming materials has been achieved in several experimental settings, efforts to draw connections from dislocation motion and structure development to stress relaxation have been limited, especially in the bulk of deforming polycrystals. This work uses high energy x-ray diffraction measurements to build these links by characterizing plastic deformation events inside individual deforming grains in both the titanium alloy, Ti-7Al, and the magnesium alloy, AZ31. This analysis is performed by combining macroscopic stress relaxation data, complete grain stress states found using far-field high energy diffraction microscopy, and rapid x-ray diffraction spot measurements made using a Mixed-Mode Pixel Array Detector. Changes in the dislocation content within the deforming grains are monitored using the evolution of the full 3-D shapes of the diffraction spot intensity distributions in reciprocal space. The results for the Ti-7Al alloy show the presence of large stress fluctuations in contrast to AZ31, which shows a lesser degree of intermittent plastic flow.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404918PMC
http://dx.doi.org/10.1063/1.5068756DOI Listing

Publication Analysis

Top Keywords

high energy
12
x-ray diffraction
12
energy x-ray
8
stress relaxation
8
deforming grains
8
diffraction spot
8
diffraction
5
intermittent plasticity
4
plasticity individual
4
individual grains
4

Similar Publications

Role of antioxidative stress activity of Fucoxanthin nanoparticle as hepatoprotective in diabetic rats.

Pak J Pharm Sci

January 2025

Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga, University, Surabaya, Indonesia.

This study attempts to prove that the antioxidant effect of fucoxanthin nanoparticles can prevent streptozotocin-induced rat liver damage. Fucoxanthin nanoparticles are synthesized using the high-energy ball milling method. Dynamic Light Scattering (DLS) was then used to describe the sizes of the fucoxanthin nanoparticles.

View Article and Find Full Text PDF

Halorhodospira (Hlr.) halophila strain BN9622 is an extremely halophilic and alkaliphilic purple phototrophic bacterium and has been widely used as a model for exploring the osmoadaptive and photosynthetic strategies employed by phototrophic extreme halophiles that enable them to thrive in hypersaline environments. Here we present the cryo-EM structures of (1) a unique native Hlr.

View Article and Find Full Text PDF
Article Synopsis
  • Lithium-ion batteries are crucial for the electric vehicle (EV) industry due to their high energy density, low discharge rate, and long lifespan, making accurate State of Charge (SOC) estimation important for performance improvement.
  • The proposed method combines the Thevenin 2RC battery model to capture the battery's non-linear dynamics with the Unscented Kalman Bucy Filter (UKBF) to enhance SOC estimation by dealing with measurement noise and nonlinearities.
  • A simulation in Matlab Simulink reveals that the UKBF outperforms other estimation methods like EKF and UKF, achieving a notably lower Root Mean Square Error (RMSE) of 0.003276 for SOC estimation.
View Article and Find Full Text PDF

Recently, as the number of cancer patients has increased, much research is being conducted for efficient treatment, including the use of artificial intelligence in genitourinary pathology. Recent research has focused largely on the classification of renal cell carcinoma subtypes. Nonetheless, the broader categorization of renal tissue into non-neoplastic normal tissue, benign tumor and malignant tumor remains understudied.

View Article and Find Full Text PDF

Sequential addition of cations increases photoluminescence quantum yield of metal nanoclusters near unity.

Nat Commun

January 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, P. R. China.

Photoluminescence is one of the most intriguing properties of metal nanoclusters derived from their molecular-like electronic structure, however, achieving high photoluminescence quantum yield (PLQY) of metal core-dictated fluorescence remains a formidable challenge. Here, we report efficient suppression of the total structural vibrations and rotations, and management of the pathways and rates of the electron transfer dynamics to boost a near-unity absolute PLQY, by decorating progressive addition of cations. Specifically, with the sequential addition of Zn, Ag, and Tb into the 3-mercaptopropionic acids capped Au nanoclusters (NCs), the low-frequency vibration of the metal core progressively decreases from 144.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!