Tip-based photoemission electron sources offer unique properties for ultrafast imaging, diffraction, and spectroscopy experiments with highly coherent few-electron pulses. Extending this approach to increased bunch-charges requires a comprehensive experimental study on Coulomb interactions in nanoscale electron pulses and their impact on beam quality. For a laser-driven Schottky field emitter, we assess the transverse and longitudinal electron pulse properties in an ultrafast transmission electron microscope at a high photoemission current density. A quantitative characterization of electron beam emittance, pulse duration, spectral bandwidth, and chirp is performed. Due to the cathode geometry, Coulomb interactions in the pulse predominantly occur in the direct vicinity to the tip apex, resulting in a well-defined pulse chirp and limited emittance growth. Strategies for optimizing electron source parameters are identified, enabling advanced ultrafast transmission electron microscopy approaches, such as phase-resolved imaging and holography.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6404915 | PMC |
http://dx.doi.org/10.1063/1.5066093 | DOI Listing |
Int J Biol Macromol
December 2024
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China. Electronic address:
Saccharides are the dominant factor shaping the texture of freeze-dried products. This study investigated the impact of various molecular-weight saccharides at different concentrations on the physical properties and intermolecular interactions of pectin-CMC cryogels by experiment and molecular dynamic (MD) simulations. Results showed that the increased shrinkage of cryogels and enhanced molecular interactions between saccharides and pectin-CMC were mechanisms that enhanced the hardness of cryogels.
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory of Shield Machine and Boring Technology, Zhengzhou, 450001, China.
This paper presents an analytical solution derived with force method for the internal forces in the ring lining of maglev train tunnels, which are typically in a circular section and shallowly buried with low vacuum air pressure in the lining. The model incorporates the vacuum pressure induced by the differences in air pressures outside and inside the lining, and the vacuum pressure is assumed to be the active load exerting to the outside of the lining. The model assumes the vertical overburden acting on the lining is proportional to the soil depth at every particular point along the tunnel lining circumference.
View Article and Find Full Text PDFNano Lett
December 2024
Wyant College of Optical Sciences, University of Arizona, 1630 East University Boulevard, Tucson, Arizona 85721, United States.
Microscopic many-body models based on inputs from first-principles density functional theory are used to calculate the carrier losses due to free carrier Auger-Meitner recombination (AMR) processes in Mo- and W-based monolayer transition metal dichalcogenides as a function of the carrier density, temperature, and dielectric environment. Despite the exceptional strength of Coulomb interaction in the two-dimensional materials, the AMR losses are found to be similar in magnitude to those in conventional III-V-based quantum wells for the same wavelengths. Unlike the case in III-V materials, the losses show nontrivial density dependencies due to the fact that bandgap renormalizations on the order of hundreds of millielectronvolts can bring higher bands into or out of resonance with the optimal energy level for the AMR transition, approximately one bandgap from the lowest band.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Institut de Physique Théorique, Université de Paris-Saclay, CEA, CNRS, F-91191 Gif-sur-Yvette Cedex, France.
The response of ionic solutions to time-varying electric fields, quantified by a frequency-dependent conductivity, is essential in many electrochemical applications. Yet, it constitutes a challenging problem due to the combined effect of Coulombic interactions, hydrodynamics, and thermal fluctuations. Here, we study the frequency-dependent conductivity of ionic solutions using a stochastic density functional theory.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
Graph neural network interatomic potentials (GNN-IPs) are gaining significant attention due to their capability of learning from large datasets. Specifically, universal interatomic potentials based on GNN, usually trained with crystalline geometries, often exhibit remarkable extrapolative behavior toward untrained domains, such as surfaces and amorphous configurations. However, the origin of this extrapolation capability is not well understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!