The achiral tripeptide Boc-Aib-MABA-Aib-OMe has the ability to co-exist as nanospheres and as a network of nanofibers in methanol. Furthermore, AFM and TEM images show the presence of bulges in the network of nanofibers. Interestingly, the formation of nanofibers is seen to emerge from the outer boundary of the spherical structures. Some of the nanofibers curl up at the tip and later result in the formation of hollow nanospheres with thick boundaries. The presence of β-turn-like structures with hydrogen bonding is observed using FT-IR studies. The presence of hydrogen bonding is also demonstrated by using NMR studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398100PMC
http://dx.doi.org/10.1002/open.201800258DOI Listing

Publication Analysis

Top Keywords

network nanofibers
8
hydrogen bonding
8
nanofibers
5
simultaneous occurrence
4
occurrence nanospheres
4
nanospheres nanofibers
4
nanofibers self-assembled
4
self-assembled achiral
4
achiral tripeptides
4
tripeptides achiral
4

Similar Publications

This study evaluated the properties of lentil protein, pea protein, quinoa protein, and soy protein as natural nanoparticle stabilizers and their interactions with pectin and chitin nanofiber in preparing high internal phase Pickering emulsions (HIPPEs). The globular plant proteins interact with polysaccharides through hydrogen bonding and electrostatic interactions, transforming the structure into complex morphologies, including fibrous and elliptical shapes. These complex nanoparticles exhibited enhanced thermal decomposition stability, and the HIPPEs constructed by them demonstrated significantly improved apparent viscosity and elastic modulus, with a yield stress of 931.

View Article and Find Full Text PDF

Large-Area Clay Composite Membranes with Enhanced Permeability for Efficient Dye/Salt Separation.

Membranes (Basel)

January 2025

Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China.

The escalating discharge of textile wastewater with plenty of dye and salt has resulted in serious environmental risks. Membranes assembled from two-dimensional (2D) nanomaterials with many tunable interlayer spacings are promising materials for dye/salt separation. However, the narrow layer spacing and tortuous interlayer transport channels of 2D-material-based membranes limit the processing capacity and the permeability of small salt ions for efficient dye/salt separation.

View Article and Find Full Text PDF

Peptides can be designed to self-assemble into predefined supramolecular nanostructures, which are then employed as biomaterials in a range of applications, including tissue engineering, drug delivery, and vaccination. However, current self-assembling peptide (SAP) hydrogels exhibit inadequate self-healing capacities and necessitate the use of sophisticated printing apparatus, rendering them unsuitable for 3D printing under physiological conditions. Here, we report a precisely designed charged peptide, Z5, with the object of investigating the impact of electrostatic interactions on the self-assembly and the rheological properties of the resulting hydrogels.

View Article and Find Full Text PDF

Pore formation mechanism and size regulation study of atmospheric dried cellulose nanofiber aerogel templated by emulsions.

Int J Biol Macromol

January 2025

College of Textile Science & Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China. Electronic address:

Atmospheric pressure drying (APD) method holds great promise in the large-scale production of aerogels without specialized equipment and critical conditions. However, atmospheric-dried cellulose- based aerogels are challenged by the collapse of the pore walls induced by the capillary force that arises during solvent evaporation. This study prepared an atmospheric dried cellulose nanofiber (CNF) aerogel with a low shrinkage rate (17.

View Article and Find Full Text PDF

Lotus-inspired cellulose-based aerogel with Janus wettability and vertically aligned vessels for salt-rejecting solar seawater purification.

Carbohydr Polym

March 2025

Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, PR China. Electronic address:

High-performance solar interface evaporators provide a promising, sustainable, and cost-effective solution to the global freshwater crisis through seawater purification. However, achieving a delicate balance between maximizing the evaporation rate and ensuring continuous, stable, and durable operation presents a critical challenge. Herein, we present a biomimetic cellulose/polypyrrole-coated silica/graphene evaporator with self-assembled nanofiber networks and vertically aligned vessels for enhanced salt resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!