Background: Microbial fuel cells (MFCs) are effective biofuel devices that use indigenous microbes to directly convert chemical energy from organics oxidation into bioelectric energy. To maximize energy-converting efficiency for bioelectricity generation in MFCs, redox mediators (RMs) (e.g., extracts obtained from plant resource- green tea) have been explored for optimal stimulation upon electron transfer (ET) capabilities. Anthocyanins are natural antioxidants widely used in food science and medicinal industry. This first-attempt study revealed optimal strategies to augment extracts of anthocyanin-rich herbs ( Murr., Linn. and Spp.) as biofuel sources of catalytic RMs for stimulating bioenergy extraction in MFCs.

Results: This work showed that extracts of anthocyanin-rich herbs were promising electroactive RMs. The maximal power density of MFCs supplemented with extract of Murr. was achieved, suggesting that extract of Murr. would be the most electrochemically appropriate RMs. Compared to Linn. and Spp., Murr. evidently owned the most significant redox-mediating capability to stimulate bioenergy extraction likely due to significantly high contents of polyphenols (e.g., anthocyanin). Evidently, increases in adenosine triphosphate (ATP) content directly responded to supplementation of anthocyanin-rich herbal extracts. It strongly suggested that the electron-shuttling characteristics of RMs upon electroactive microorganisms could effectively promote the electron transfer capability to maximize bioenergy extraction in MFCs.

Conclusion: Anthocyanin as the main water-soluble vacuolar pigments in plant products were very electroactive for not only excellent antioxidant activities, but also promising electron-shuttling capabilities for renewable biofuel applications. This work also suggested the electron-shuttling mechanism of RMs that could possibly promote electron transport phenomena through microbial cell membrane, further influencing the electron transport chain for efficient bioenergy generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396463PMC
http://dx.doi.org/10.1186/s13068-019-1385-zDOI Listing

Publication Analysis

Top Keywords

bioenergy extraction
12
microbial fuel
8
fuel cells
8
electron transfer
8
extracts anthocyanin-rich
8
anthocyanin-rich herbs
8
linn spp
8
extract murr
8
suggested electron-shuttling
8
promote electron
8

Similar Publications

Food waste condensate (FWC) is a valuable source for recovering short-chain fatty acids (SCFAs) through methods such as supported liquid membrane contactors. Containing organic compounds like acetate, propionate, and butyrate, FWC offers a rich substrate for efficient SCFA extraction. Recovering SCFAs from FWC provides notable environmental advantages, including reducing waste and generating high-value products for industries such as bioenergy and chemical production.

View Article and Find Full Text PDF

Poultry litter extract as solid waste supplement for enhanced microalgal biomass production and wastewater treatment.

Environ Sci Pollut Res Int

January 2025

Biorefinery and Bioenergy Research Laboratory, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.

Wastewater and livestock waste can be used as a cheap source of nutrients for microalgae growth. In this work, a cocktail waste medium (CWM) was developed using 75% Chhalera municipal wastewater (C-MWW), 25% Parag dairy wastewater (P-DWW), and 15 g L of poultry litter extract (PLE-15) for low-cost cultivation of Chlorella sp. BRE4.

View Article and Find Full Text PDF

Membrane-assisted direct seawater splitting (DSS) technologies are actively studied as a promising route to produce green hydrogen (H2), whereas the indispensable use of supporting electrolytes that help to extract water and provide electrochemically-accelerated reaction media results in a severe energy penalty, consuming up to 12.5% of energy input when using a typical KOH electrolyte. We bypass this issue by designing a zero-gap electrolyzer configuration based on the integration of cation exchange membrane and bipolar membrane assemblies, which protects stable DSS operation against the precipitates and corrosion in the absence of additional supporting electrolytes.

View Article and Find Full Text PDF

Machine learning-motivated trace triethylamine identification by bismuth vanadate/tungsten oxide heterostructures.

J Colloid Interface Sci

December 2024

College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China. Electronic address:

Triethylamine, an extensively used material in industrial organic synthesis, is hazardous to the human respiratory and nervous systems, but its accurate detection and prediction has been a long-standing challenge. Herein, a machine learning-motivated chemiresistive sensor that can predict ppm-level triethylamine is designed. The zero-dimensional (0D) bismuth vanadate (BiVO) nanoparticles were anchored on the surface of three-dimensional (3D) tungsten oxide (WO) architectures to form hierarchical BiVO/WO heterostructures, which demonstrates remarkable triethylamine-sensing performance such as high response of 21 (4 times higher than pristine WO) at optimal temperature of 190 °C, low detection limit of 57 ppb, long-term stability, reproducibility and good anti-interference property.

View Article and Find Full Text PDF

Is it possible to shape the microalgal biomass composition with operational parameters for target compound accumulation?

Biotechnol Adv

December 2024

LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal. Electronic address:

Article Synopsis
  • - Microalgae are promising microorganisms that can produce a variety of valuable compounds, like proteins and antioxidants, due to their rapid growth and ability to utilize CO2 and wastewater, making them sustainable for various industries like bioenergy and cosmetics.
  • - The study emphasizes the importance of selecting the right microalgal species and manipulating growth conditions (like light, nutrients, and temperature) to enhance the production of desired compounds, while facing challenges related to species responses and scale-up.
  • - Future research should focus on improving cultivation methods, real-time monitoring for better yield, and conducting large-scale experiments to analyze the sustainability and economic feasibility of microalgal applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!