Background: Tissue tumor mutational burden (TMB) has emerged as a potential biomarker predicting response to anti-programmed cell death-1 protein receptor (PD-1)/programmed cell death-1 protein ligand (PD-L1) therapy, but few studies have explored using circulating tumor DNA (ctDNA) TMB in non-small cell lung cancer (NSCLC).
Materials And Methods: A total of 136 patients with NSCLC with ctDNA testing were retrospectively evaluated from a single institution, along with a validation cohort from a second institution. ctDNA TMB was derived using the number of detected mutations over the DNA sequencing length.
Results: Higher ctDNA TMB was significantly correlated with smoking history ( < .05, chi-squared test). Among patients treated with immune checkpoint inhibitors ( = 20), higher ctDNA TMB was significantly correlated with shorter progressive free survival (PFS) and overall survival (OS; 45 vs. 355 days; hazard ratio [HR], 5.6; 95% confidence interval [CI], 1.3-24.6; < .01, and OS 106 days vs. not reached; HR, 6.0; 95% CI, 1.3-27.1; < .01, respectively). In a small independent validation cohort ( = 12), there was a nonsignificant numerical difference for higher ctDNA TMB predicting shorter OS but not PFS. ctDNA TMB was not correlated with RECIST tumor burden estimation in the subset of patients treated with immune checkpoint blockade.
Conclusion: The findings indicate that higher ctDNA TMB, at the current commercial sequencing length, reflects worse clinical outcomes.
Implications For Practice: Biomarkers to identify patients who will respond to immune checkpoint blockade are critical. Tissue tumor mutational burden (TMB) has emerged as a viable biomarker to predict response to anti-PD-1/PD-L1 therapy, but few studies have explored the meaning and potential clinical significance of noninvasive, blood-based TMB. Here, we investigated circulating tumor DNA (ctDNA) TMB and present data demonstrating that current ctDNA TMB may reflect tumor burden and that ctDNA panels with a greater number of mutations may be necessary to more accurately reflect tissue TMB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6656496 | PMC |
http://dx.doi.org/10.1634/theoncologist.2018-0433 | DOI Listing |
Am J Clin Dermatol
December 2024
Medical Faculty Heidelberg, Department of Dermatology and National Center for Tumor Diseases (NCT), Heidelberg University, NCT Heidelberg, a partnership between DKFZ and University Hospital Heidelberg, Heidelberg, Germany.
Melanoma, a highly aggressive form of skin cancer, has seen significant advancements in treatment through the introduction of immunotherapy. However, the variability in patient responses underscores the need for reliable biomarkers to guide treatment decisions. This article reviews key biomarkers in melanoma immunotherapy, such as PD-L1 expression, tumor mutational burden (TMB), and gene expression profiles (GEPs).
View Article and Find Full Text PDFFront Oncol
November 2024
Department of Biological Sciences, School of Science, AI University Research Centre, Xi'an Jiaotong-Liverpool University, Suzhou, China.
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment modality, offering promising outcomes for various malignancies. However, the efficacy of ICIs varies among patients, highlighting the essential need of accurate predictive biomarkers. This review synthesizes the current understanding of biomarkers for ICI therapy, and discusses the clinical utility and limitations of these biomarkers in predicting treatment outcomes.
View Article and Find Full Text PDFBiomedicines
September 2024
Department of Oncology, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania.
: Immunotherapy has changed the therapeutic approach for various solid tumors, especially lung tumors, malignant melanoma, renal and urogenital carcinomas, demonstrating significant antitumor activity, with tolerable safety profiles and durable responses. However, not all patients benefit from immunotherapy, underscoring the need for predictive biomarkers that can identify those most likely to respond to treatment. The integration of predictive biomarkers into clinical practice for immune checkpoint inhibitors (ICI) holds great promise for personalized cancer treatment.
View Article and Find Full Text PDFCureus
September 2024
Department of Medical Oncology, Institute of Oncology "Prof. Dr. Alexandru Trestioreanu", Bucharest, ROU.
Cutaneous malignant melanoma is one of the most aggressive forms of skin cancer and thus, a high mortality has been reported over decades. The prognosis for melanoma varies widely based on several factors, including the stage at which it is diagnosed, the location and thickness of the tumor, the patient's age and overall health, and specific genetic factors associated with melanoma. Therapeutic options include checkpoint inhibitors, regardless of V-Raf Murine Sarcoma Viral Oncogene Homolog B status (BRAF), and targeted therapy (anti-BRAF) in the adjuvant or metastatic setting.
View Article and Find Full Text PDFCell Biosci
September 2024
Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
Small cell lung cancer (SCLC) is a highly malignant and poor-prognosis cancer, with most cases diagnosed at the extensive stage (ES). Amidst a landscape marked by limited progress in treatment modalities for ES-SCLC over the past few decades, the integration of immune checkpoint inhibitors (ICIs) with platinum-based chemotherapy has provided a milestone approach for improving prognosis, emerging as the new standard for initial therapy in ES-SCLC. However, only a minority of SCLC patients can benefit from ICIs, which frequently come with varying degrees of immune-related adverse events (irAEs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!