Background: During the production period of laying hens, the number of cracked eggshells increases and the skeleton becomes brittle. Both these problems are related to ageing of the hen and cause economic problems for egg producers and impaired animal welfare. This study investigated key factors in the shell gland and duodenum related to eggshell quality and bone strength in laying hens during the production period. Five Lohmann Selected Leghorn (LSL) and five Lohmann Brown (LB), common hybrids in commercial egg production, were euthanized at 21, 29, 49 and 70 weeks (wk) of age. Blood samples for analysis of total calcium were taken at euthanization. Right femur and humerus were used for bone strength measurements and tissue samples from shell gland and duodenum were processed for morphology, immunohistochemical localisation of oestrogen receptors (ERα, ERβ), plasma membrane calcium ATPase (PMCA) and histochemical localisation of carbonic anhydrases (CA). Eggs were collected for shell quality measurements.

Results: At age 49 week, shell and bone strength had both deteriorated, but the hens were then able to maintain the level until 70 week of age and femur bone strength even improved. The main physiological findings associated with the effects seen at 49 week were reduced gland density and a shift in balance between ERα and ERβ in the shell gland, which coincided with a reduction in CA activity in the duodenum. Somewhat surprisingly, capillary density and capillaries with CA activity both increased in the shell gland over time, the latter possibly mediated via ERβ. These findings were independent of hybrid. PMCA was found in both shell gland and duodenum, but appeared unrelated to the age-related changes in shell and bone quality.

Conclusions: In hens around half-way through the production period, both shell quality and bone strength had deteriorated. Decreased gland density and a shift in the balance between ERα and ERβ in the shell gland, co-occurring with a dramatic drop in duodenal CA activity, are suggested as possible factors involved in age-related changes in shell and bone quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6417018PMC
http://dx.doi.org/10.1186/s13028-019-0449-1DOI Listing

Publication Analysis

Top Keywords

shell gland
28
bone strength
24
gland duodenum
16
shell
13
age-related changes
12
changes shell
12
shell quality
12
quality bone
12
production period
12
erα erβ
12

Similar Publications

The taxonomic complexity of the families Clathrozoidae and Clathrozoellidae, rooted in early 20th-century hydroid descriptions, highlights the need for comprehensive and detailed morphological analyses. This study aimed to elucidate the histology of the polypoid stage of Peña Cantero, Vervoort & Watson, 2003, with a particular emphasis on its exoskeletal structure. Specimens from the National Museum of Natural History were examined histologically using different staining techniques.

View Article and Find Full Text PDF

White spot syndrome virus (WSSV) poses a major risk to shrimp aquaculture, and filter-feeding bivalves on shrimp farms may contribute to its persistence and transmission. This study investigated the bioaccumulation and vector potential of WSSV in Pacific oysters (), blue mussels (), and manila clams () cohabiting with WSSV-infected shrimp. Sixty individuals of each species (average shell lengths: 11.

View Article and Find Full Text PDF

Non-toxic core-shell nanowires for extracellular vesicle scavenging.

Chem Commun (Camb)

December 2024

Department of Life Science and Technology, Institute of Science Tokyo, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan.

Article Synopsis
  • Extracellular vesicles (EVs) from cancer cells can cause normal cells to grow uncontrollably, which might contribute to cancer spread.
  • Researchers created a device using nanowires that effectively removes these EVs without harming the cells.
  • By using this device, they were able to return normal growth to mammary gland cells that had been exposed to cancer cell-derived EVs.
View Article and Find Full Text PDF

Gga-miR-34b-3p targets calbindin 1 to regulate cellular calcium ion homeostasis during eggshell calcification in chicken uterus.

Int J Biol Macromol

January 2025

College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, PR China. Electronic address:

Improving eggshell quality in poultry is a key breeding goal, and identifying genetic markers that regulate eggshell calcification is essential for accelerating genetic advancements. This study focused on identifying the keys genes and molecular mechanisms that regulate eggshell calcification in the chicken uterus. The results showed that rapid eggshell mineralization began approximately 4 h after the egg enters the uterus, corresponding with observed morphological and histological changes in the uterine tissue.

View Article and Find Full Text PDF

Fabrication of a transforming growth factor β1 functionalized silk sericin hydrogel through genetical engineering to repair alveolar bone defects in rabbit.

Biomaterials

May 2025

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China. Electronic address:

Cleft palate is one of the most prevalent congenital craniofacial birth defects in human congenital facial anomaly. Severe cleft palate is usually accompanied by alveolar bone defects (ABDs). Growth factors (GFs) are considered as desirable opportunity to promote the craniofacial healing post the surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!