Immunization with whole cell but not acellular pertussis vaccines primes CD4 T cells that sustain protective immunity against nasal colonization with Bordetella pertussis.

Emerg Microbes Infect

a Immune Regulation Research Group, School of Biochemistry and Immunology , Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin , Ireland.

Published: July 2019

Protective immunity wanes rapidly after immunization of children with acellular pertussis (aP) vaccines and these vaccines do not prevent nasal colonization or transmission of Bordetella pertussis in baboons. In this study, we examined the role of tissue-resident memory T (T) cells in persistent protective immunity induced by infection or immunization with aP and whole-cell pertussis (wP) vaccines in mice. Immunization of mice with a wP vaccine protected against lung and nasal colonization, whereas an aP vaccine failed to protect in the nose. IL-17 and IFN-γ-secreting CD69CD4 T cells were expanded in the lung and nasal tissue after B. pertussis challenge of mice immunized with wP, but not aP vaccines. However, previous infection induced the most persistent protection against nasal colonization and this correlated with potent induction of nasal tissue T cells, especially IL-17-secreting T cells. Blocking T cell migration to respiratory tissue during immunization with a wP vaccine impaired bacterial clearance, whereas transfer of T cells from convalescent or wP-immunized mice conferred protection to naïve mice. Our findings reveal that previous infection or wP vaccination are significantly more effective than aP vaccination in conferring persistent protective immunity against B. pertussis and that this is mediated by respiratory T cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6455184PMC
http://dx.doi.org/10.1080/22221751.2018.1564630DOI Listing

Publication Analysis

Top Keywords

protective immunity
16
nasal colonization
16
pertussis vaccines
12
acellular pertussis
8
bordetella pertussis
8
persistent protective
8
lung nasal
8
nasal tissue
8
previous infection
8
pertussis
7

Similar Publications

Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.

View Article and Find Full Text PDF

Extracellular vesicles: essential agents in critical bone defect repair and therapeutic enhancement.

Mol Biol Rep

January 2025

Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.

Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.

View Article and Find Full Text PDF

Introduction: We sought to explore the variability of antibody responses to multiple vaccines during early life in individual children, assess the trajectory of each child longitudinally, determine the associations of demographic variables and antibiotic exposures with vaccine-induced immunity, and link vaccine responsiveness to infection proneness.

Methods: In 357 prospectively-recruited children, age six through 36 months, antibody levels to 13 routine vaccine antigens were measured in sera at multiple time points and normalized to their respective protective thresholds to categorize children into four groups: very low, low, normal, and high vaccine responder. Demographic variables and frequency of antibiotic exposure data were collected.

View Article and Find Full Text PDF

Synthetic rational design of live-attenuated Zika viruses based on a computational model.

Nucleic Acids Res

January 2025

SynVaccine Ltd, Ramat Hachayal, 3 Golda Meir Street, Science Park, Nes Ziona 7403648, Israel.

Many viruses of the Flaviviridae family, including the Zika virus (ZIKV), are human pathogens of significant public health concerns. Despite extensive research, there are currently no approved vaccines available for ZIKV and specifically no live-attenuated Zika vaccine. In this current study, we suggest a novel computational algorithm for generating live-attenuated vaccines via the introduction of silent mutation into regions that undergo selection for strong or weak local RNA folding or into regions that exhibit medium levels of sequence conservation.

View Article and Find Full Text PDF

Background: The mechanism underlying chronic drug-induced liver injury (DILI) remains unclear. Immune activation is a common feature of DILI progression and is closely associated with metabolism. We explored the immunometabolic profile of chronic DILI and the potential mechanism of chronic DILI progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!