Characterization of Nucleobases in Broadband Terahertz Spectra from 0.5 to 10 THz with the Air-Biased-Coherent-Detection Technique.

Sensors (Basel)

Key Laboratory of Opto-electronic Measurement and Optical Information Transmission Technology, Ministry of Education, Changchun University of Science and Technology, Changchun 130022, China.

Published: March 2019

Terahertz time-domain spectroscopy (THz-TDS) is an effective coherent detection technique for deeply understanding the structures and functions of biomolecules. However, generally not full information in the whole THz range can be obtained due to the limited detection bandwidth (usually less than 5 THz) of the traditional THz-TDS systems. In this paper, effective THz absorption spectra in 0.5⁻10 THz range of five typical nucleobases of DNA/RNA are characterized with a super broadband THz detection technique, called the air-biased- coherent-detection (THz-ABCD) technique. Few unexpected characteristic absorption peaks appeared in the low-frequency region and meanwhile a series of anticipated characteristic absorption peaks are found in the high-frequency region. The fingerprint spectra of these nucleobases are helpful for further analysis on the vibration and twisting behavior of hydrogen bonds, van der Waals and electrostatic forces etc. between and within DNA/RNA biomolecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6427222PMC
http://dx.doi.org/10.3390/s19051148DOI Listing

Publication Analysis

Top Keywords

detection technique
8
thz range
8
characteristic absorption
8
absorption peaks
8
thz
6
characterization nucleobases
4
nucleobases broadband
4
broadband terahertz
4
terahertz spectra
4
spectra thz
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!