Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The Origin Replication Complex (ORC), which is a multi-subunit protein complex composed of six proteins ORC1-6, is essential for initiating licensing at DNA replication origins. We have previously reported that ORC4 has an alternative function wherein it forms a cage surrounding the extruded chromatin in female meiosis and is required for polar body extrusion (PBE). As this is a highly unexpected finding for protein that normally binds DNA, we tested whether ORC4 can actually form larger, higher order structures, which would be necessary to form a cage-like structure. We generated two fluorescent constructs of mouse ORC4, mORC4-EGFP and mORC4-FlAsH, to examine its spatial dynamics during oocyte activation in live cells. We show that both constructs were primarily monomeric throughout the embryo but self-association into larger units was detected with both probes. However, mORC4-FlAsH clearly showed higher order self-association and unique spatial distribution while mORC4-EGFP failed to form large structures during Anaphase II. Interestingly, both variants were found in the pronuclei suggesting that its role in DNA licensing is still functional. Our results with both constructs support the prediction that ORC4 can form higher order structures in the cytoplasm, suggesting that it is possible to form a cage-like structure. The finding that FlAsH labeled ORC4 formed demonstrably larger higher order structures than ORC4-GFP suggests that ORC4 oligomerization is sensitive to the bulky addition of GFP at its carboxy terminus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6636821 | PMC |
http://dx.doi.org/10.1088/2050-6120/ab0f57 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!