The rapid urbanization in China since the 1970s has led to an exponential growth of metal stocks (MS) in use in cities. A retrospect on the quantity, quality, and patterns of these MS is a prerequisite for projecting future metal demand, identifying urban mining potentials of metals, and informing sustainable urbanization strategies. Here, we deployed a bottom-up stock accounting method to estimate stocks of iron, copper, and aluminum embodied in 51 categories of products and infrastructure across 10 Chinese megacities from 1980 to 2016. We found that the MS in Chinese megacities had reached a level of 2.6-6.3 t/cap (on average 3.7 t/cap for iron, 58 kg/cap for copper, and 151 kg/cap for aluminum) in 2016, which still remained behind the level of western cities or potential saturation level on the country level (e.g., approximately 13 t/cap for iron). Economic development was identified as the most powerful driver for MS growth based on an IPAT decomposition analysis, indicating further increase in MS as China's urbanization and economic growth continues in the next decades. The latecomer cities should therefore explore a wide range of strategies, from urban planning to economy structure to regulations, for a transition toward more "metal-efficient" urbanization pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.9b00387 | DOI Listing |
Sci Rep
January 2025
Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, Guangdong Province, People's Republic of China.
The rapid growth of electric vehicles (EVs) in China challenges raw material demand. This study evaluates the impact of recycling and reusing EV batteries on reducing material demand and carbon emissions. Integrating a national-level vehicle stock turnover model with life-cycle carbon emission assessment, we found that replacing nickel-cobalt-manganese batteries with lithium iron phosphate batteries with battery recycling can reduce lithium, cobalt, and nickel demand between 2021 and 2060 by up to 7.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Lab of Geohazard prevention & Geoenvironment protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. Electronic address:
Sulfur nanoparticles (SNPs) and their composites are promising for heavy metal adsorption, yet current SNPs often lack surface S, leading to low affinity toward heavy metal and ease of aggregation. Here, we report a simple light-driven method for facile prepare SNPs with surfaces enriched with S and in-situ load them onto graphene oxide (GO) to fabricate GO-S composites. Under illumination, the O generated by photosensitizer phloxine B was able to oxidize S into elemental SNPs.
View Article and Find Full Text PDFBone Jt Open
January 2025
Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
Aims: The aim of this study was to report long-term clinical outcomes of a modern convertible metal-backed glenoid (MBG) in total shoulder arthroplasty (TSA).
Methods: After a minimum of 15 years, a previously studied cohort of 35 patients who received a modern convertible MBG during the period 1996 to 2005 was contacted for clinical and radiological follow-up. At last follow-up, patients were evaluated radiologically and clinically according to the Constant Score, Simple Shoulder Test, and visual analogue scale for pain.
BMC Cancer
January 2025
Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Background: Inadequate treatment responses, chemotherapy resistance, significant heterogeneity, and lengthy treatment durations create an urgent need for new pancreatic cancer therapies. This study aims to investigate the effectiveness of gemcitabine-loaded nanoparticles enclosed in an organo-metallic framework under ketogenic conditions in inhibiting the growth of MIA-PaCa-2 cells.
Methods: Gemcitabine was encapsulated in Metal-organic frameworks (MOFs) and its morphology and size distribution were examined using transmission electron microscopy (TEM) and Dynamic light scattering (DLS) with further characterization including FTIR analysis.
Am J Sports Med
January 2025
Mayo Clinic Arizona Department of Orthopedic Surgery, Phoenix, Arizona, USA.
Background: The Latarjet and other bony augmentation procedures are commonly used to treat anterior shoulder instability in the setting of significant glenoid bone loss. Although several fixation strategies have been reported, the biomechanical strength of these techniques remains poorly understood.
Purpose: To perform a systematic review of the biomechanical strength of glenoid bony augmentation procedures for anterior shoulder instability.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!