How do large-mammal communities reassemble after being pushed to the brink of extinction? Few data are available to answer this question, as it is rarely possible to document both the decline and recovery of wildlife populations. Here we present the first in-depth quantitative account of war-induced collapse and postwar recovery in a diverse assemblage of large herbivores. In Mozambique's Gorongosa National Park, we assembled data from 15 aerial wildlife counts conducted before (1968-1972) and after (1994-2018) the Mozambican Civil War (1977-1992). Pre-war total biomass density exceeded 9,000 kg km-2, but populations declined by >90% during the war. Since 1994, total biomass has substantially recovered, but species composition has shifted dramatically. Formerly dominant large herbivores-including elephant (Loxodonta africana), hippo (Hippopotamus amphibius), buffalo (Syncerus caffer), zebra (Equus quagga), and wildebeest (Connochaetes taurinus)-are now outnumbered by waterbuck (Kobus ellipsiprymnus) and other small to mid-sized antelopes. Waterbuck abundance has increased by an order of magnitude, with >55,000 individuals accounting for >74% of large-herbivore biomass in 2018. By contrast, elephant, hippo, and buffalo, which totaled 89% of pre-war biomass, now comprise just 23%. These trends mostly reflect natural population growth following the resumption of protection under the Gorongosa Restoration Project; reintroductions (465 animals of 7 species) accounted for a comparatively small fraction of the total numerical increase. Waterbuck are growing logistically, apparently as-yet unchecked by interspecific competition or predation (apex-carnivore abundance has been low throughout the post-war interval), suggesting a community still in flux. Most other herbivore populations have increased post-war, albeit at differing rates. Armed conflict remains a poorly understood driver of ecological change; our results demonstrate the potential for rapid post-war recovery of large-herbivore biomass, given sound protected-area management, but also suggest that restoration of community structure takes longer and may require active intervention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6415879 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0212864 | PLOS |
Nat Ecol Evol
May 2020
Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA.
Trophic rewilding seeks to rehabilitate degraded ecosystems by repopulating them with large animals, thereby re-establishing strong top-down interactions. Yet there are very few tests of whether such initiatives can restore ecosystem structure and functions, and on what timescales. Here we show that war-induced collapse of large-mammal populations in Mozambique's Gorongosa National Park exacerbated woody encroachment by the invasive shrub Mimosa pigra-considered one of the world's 100 worst invasive species-and that one decade of concerted trophic rewilding restored this invasion to pre-war baseline levels.
View Article and Find Full Text PDFPLoS One
November 2019
Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, United States of America.
How do large-mammal communities reassemble after being pushed to the brink of extinction? Few data are available to answer this question, as it is rarely possible to document both the decline and recovery of wildlife populations. Here we present the first in-depth quantitative account of war-induced collapse and postwar recovery in a diverse assemblage of large herbivores. In Mozambique's Gorongosa National Park, we assembled data from 15 aerial wildlife counts conducted before (1968-1972) and after (1994-2018) the Mozambican Civil War (1977-1992).
View Article and Find Full Text PDFNed Tijdschr Geneeskd
July 2018
Acta Biomedica, Elsloo.
The logistics system for blood transfusion was first developed on the Western Front during World War I. This article focuses on the people who played a major role in this development. It discusses the people who came up with the idea of preventing coagulation through addition of citrate and who discovered the stabilisation of blood by adding glucose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!