Cucurbiturils are one type of widely used macrocyclic host compound in supramolecular chemistry. Their peculiar properties have led to applications in a wide variety of research areas such as fluorescence spectroscopy, drug delivery, catalysis, and nanotechnology. However, the solubilities of cucurbiturils are rather poor in water and many organic solvents, which may cause accuracy problems when measuring binding constants with traditional methods. In this report, we aim to develop an approach to measure the binding constants of cucurbituril-based host-guest interactions at the single-molecule level. First, we covalently attach different guest compounds to the side-chain of DNA molecules. Then, excess cucurbiturils are incubated with DNA probes to form the host-guest complexes. Next, the modified DNA hybrids are threaded through α-hemolysin nanopore to generate highly characteristic current events. Finally, statistical analyses of the obtained events afford the binding constants of cucurbiturils with various molecules. This new approach provides a simple and straightforward method to compare binding strength of different host-guest complexes and may find applications for quantifying other macrocycle-based host-guest interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.9b00408 | DOI Listing |
Phys Rev Lett
December 2024
Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, D 69117 Heidelberg, Germany.
Calculations of the two-loop electron self-energy for the 1S Lamb shift are reported, performed to all orders in the nuclear binding strength parameter Zα (where Z is the nuclear charge number and α is the fine structure constant). Our approach allows calculations to be extended to nuclear charges lower than previously possible and improves the numerical accuracy by more than an order of magnitude. Extrapolation of our all-order results to hydrogen yields a result twice as precise as the previously accepted value [E.
View Article and Find Full Text PDFPrep Biochem Biotechnol
January 2025
School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
In this paper, we have analyzed biodesulfurization of dibenzothiophene (DBT) and 4,6-dibenzothiophene (4,6-DMDBT) by 4S metabolic pathway using molecular simulations. Docking analysis revealed lower binding energies and inhibition constants () for 4,6-DMDBT and its metabolic intermediates with DSZ enzymes than DBT and its intermediates. The complexes of substrate and its metabolites with DSZ enzymes had higher stability for 4,6-DMDBT than DBT owing to lower RMSF values than apoprotein.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
Parkinson disease (PD) is a multisystem disorder marked by progressive dopaminergic neuronal degeneration in the substantia nigra, as well as nondopaminergic systems. Our aim was to investigate longitudinal changes in -(3-[F]fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane (F-FP-CIT) binding at the putamen, substantia nigra, and raphe nuclei in PD. This retrospective cohort study enrolled 127 patients with PD, who underwent F-FP-CIT PET scans twice or more, and 71 age- and sex-matched healthy controls.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India. Electronic address:
Biofilm formation is a key adaptive response of marine bacteria towards stress conditions. The protective mechanisms of biofilm matrixome proteins against heavy metals (Pb and Cd) induced oxidative damage in the marine bacterium Bacillus stercoris GST-03 was investigated. Exposure to heavy metals resulted in significant changes in cell morphology, biofilm formation, and matrixome composition.
View Article and Find Full Text PDFTIMP-1 (Tissue Inhibitor of Metalloproteinases-1) is a protein involved in regulating extracellular matrix (ECM) degradation. It is recognized as a significant biomarker for cancer diagnosis. This study aimed to develop and characterize a single-stranded DNA (ssDNA) aptamer targeting human TIMP-1 protein with high affinity and specificity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!