In this paper, we introduce a Bayesian statistical model for the analysis of functional data observed at several time points. Examples of such data include the Michigan growth study where we wish to characterize the shape changes of human mandible profiles. The form of the mandible is often used by clinicians as an aid in predicting the mandibular growth. However, whereas many studies have demonstrated the changes in size that may occur during the period of pubertal growth spurt, shape changes have been less well investigated. Considering a group of subjects presenting normal occlusion, in this paper we thus describe a Bayesian functional ANOVA model that provides information about where and when the shape changes of the mandible occur during different stages of development. The model is developed by defining the notion of predictive process models for Gaussian process (GP) distributions used as priors over the random functional effects. We show that the predictive approach is computationally appealing and that it is useful to analyze multivariate functional data with unequally spaced observations that differ among subjects and times. Graphical posterior summaries show that our model is able to provide a biological interpretation of the morphometric findings and that they comprehensively describe the shape changes of the human mandible profiles. Compared with classical cephalometric analysis, this paper represents a significant methodological advance for the study of mandibular shape changes in two dimensions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bimj.201800228 | DOI Listing |
J Med Internet Res
January 2025
Department High-Tech Business and Entrepreneurship Section, Industrial Engineering and Business Information Systems, University of Twente, Enschede, Overijssel, Netherlands.
Health recommender systems (HRS) have the capability to improve human-centered care and prevention by personalizing content, such as health interventions or health information. HRS, an emerging and developing field, can play a unique role in the digital health field as they can offer relevant recommendations, not only based on what users themselves prefer and may be receptive to, but also using data about wider spheres of influence over human behavior, including peers, families, communities, and societies. We identify and discuss how HRS could play a unique role in decreasing health inequities.
View Article and Find Full Text PDFAm J Forensic Med Pathol
January 2025
From the Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC.
The ossa cordis (OC), or cardiac bone, is a bony structure within the cardiac skeleton of mammals, believed to maintain heart shape during systole and enhance contraction efficiency. Found in large mammals, especially ruminants, and has recently been described in chimpanzees; however, OC has not previously been described in humans. Herein, we present an incidental finding of OC in the heart of a 39-year-old man who suffered a stab wound to chest.
View Article and Find Full Text PDFOper Neurosurg (Hagerstown)
November 2024
Department of Neurosurgery, University of Pennsylvania Health System, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
Background And Objective: Transcranial magnetic resonance-guided focused ultrasound (MRgFUS) has revolutionized ablative treatment of essential tremor in recent years. However, limitations in precision targeting may account for suboptimal efficacy and significant side effects. We describe a simple intraprocedural three-dimensional image-guided lesion shaping technique that can improve overall outcomes of MRgFUS for essential tremor and facilitate expansion to novel indications.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Museum of Natural History, University of Colorado-Boulder, Boulder, CO 80309.
Amid global challenges like climate change, extinctions, and disease epidemics, science and society require nuanced, international solutions that are grounded in robust, interdisciplinary perspectives and datasets that span deep time. Natural history collections, from modern biological specimens to the archaeological and fossil records, are crucial tools for understanding cultural and biological processes that shape our modern world. At the same time, natural history collections in low and middle-income countries are at-risk and underresourced, imperiling efforts to build the infrastructure and scientific capacity necessary to tackle critical challenges.
View Article and Find Full Text PDFScience
January 2025
Laboratory of Quantitative Global Change Ecology, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
Human-driven Arctic warming and resulting sea ice loss have been associated with declines in several polar bear populations. However, quantifying how individual responses to environmental change integrate and scale to influence population dynamics in polar bears has yet to be achieved. We developed an individual-based bioenergetic model and hindcast population dynamics across 42 years of observed sea ice conditions in Western Hudson Bay, a region undergoing rapid environmental change.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!