Although thousands of long noncoding RNAs (lncRNAs) have been annotated, only a limited number of them have been functionally characterized. Here, we identified an oncogenic lncRNA, named lnc-UCID (lncRNA up-regulating CDK6 by interacting with DHX9). Lnc-UCID was up-regulated in hepatocellular carcinoma (HCC), and a higher lnc-UCID level was correlated with shorter recurrence-free survival of HCC patients. Both gain-of-function and loss-of function studies revealed that lnc-UCID enhanced cyclin-dependent kinase 6 (CDK6) expression and thereby promoted G1/S transition and cell proliferation. Studies from mouse xenograft models revealed that tumors derived from lnc-UCID-silenced HCC cells had a much smaller size than those from control cells, and intratumoral injection of lnc-UCID small interfering RNA suppressed xenograft growth. Mechanistically, the 850-1030-nt domain of lnc-UCID interacted physically with DEAH (Asp-Glu-Ala-His) box helicase 9 (DHX9), an RNA helicase. On the other hand, DHX9 post-transcriptionally suppressed CDK6 expression by binding to the 3'-untranslated region (3'UTR) of CDK6 mRNA. Further investigation disclosed that lnc-UCID enhanced CDK6 expression by competitively binding to DHX9 and sequestering DHX9 from CDK6-3'UTR. In an attempt to explore the mechanisms responsible for lnc-UCID up-regulation in HCC, we found that the lnc-UCID gene was frequently amplified in HCC. Furthermore, miR-148a, whose down-regulation was associated with an increase of lnc-UCID in HCC, could bind lnc-UCID and inhibit its expression. Conclusion: Up-regulation of lnc-UCID, which may result from amplification of its gene locus and down-regulation of miR-148a, can promote HCC growth by preventing the interaction of DHX9 with CDK6 and subsequently enhancing CDK6 expression. These findings provide insights into the biological functions of lncRNAs, the regulatory network of cell cycle control, and the mechanisms of HCC development, which may be exploited for anticancer therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6618099 | PMC |
http://dx.doi.org/10.1002/hep.30613 | DOI Listing |
Int J Oncol
February 2025
Department of Pathology, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, 6229HX Maastricht, The Netherlands.
Human papillomavirus (HPV)‑positive and -negative head and neck squamous cell carcinoma (HNSCC) are often associated with activation of the phosphatidylinositol 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway due to mutations or amplifications in , loss of or activation of receptor tyrosine kinases. In HPV‑negative tumors, (encoding p16 protein) inactivation or (encoding Cyclin D1 protein) amplification frequently results in sustained cyclin‑dependent kinase (CDK) 4/6 activation. The present study aimed to investigate the efficacy of the CDK4/6 inhibitors (CDKi) palbociclib and ribociclib, and the PI3K/Akt/mTOR pathway inhibitors (PI3Ki) gedatolisib, buparlisib and alpelisib, in suppressing cell viability of HPV‑positive and ‑negative HNSCC cell lines.
View Article and Find Full Text PDFRSC Med Chem
December 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq Baghdad 10023 Iraq.
Many cancers have displayed resistance to chemotherapeutic drugs over the past few decades. EGFR has emerged as a leading target for cancer therapy inhibiting tumor angiogenesis. Besides, studies strongly suggest that blocking telomerase activity could be an effective way to control the growth of certain cancer cells.
View Article and Find Full Text PDFBull Exp Biol Med
December 2024
Department of Laboratory Medicine, Putian University, Putian, China.
The mechanism of Hespintor (a protein of serpin family) inhibitory action on the growth of inoculated hepatocellular carcinoma was studied in a model of human hepatoma in nude mice by using on long-noncoding RNA (lncRNA) sequencing. Two days after tumor transplantation, Hespintor or normal saline was injected into the caudal vein at a dose of 15 μg/kg (2 times a week over 4 weeks). The tumors were isolated in 4 weeks after subcutaneous injection of human hepatoma MHCC97-H cells.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, 710032, Xi'an, People's Republic of China.
CDK4/6i, the first-line drug for treating ERα-positive breast cancer, significantly improves clinical outcomes. However, CDK4/6i resistance often develops and remains a major hurdle, and the underlying mechanisms remain challenging to fully investigate. Here, we used Genome-wide CRISPR/Cas9 library screening combined with single-cell sequencing to screen for molecules mediating CDK4/6i resistance and identified METTL14 as a determinant of CDK4/6i sensitivity.
View Article and Find Full Text PDFCytotechnology
February 2025
Future Medical Laboratory, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150086 Heilongjiang China.
Long non-coding RNA LINC01214 is reported to be up-regulated in non-small cell lung cancer (NSCLC), however, its function in NSCLC has not been elucidated yet. In our study, we verified that LINC01214 was aberrantly higher in the tumor tissues and cell lines than that in the normal controls, and was relevant to the severity and prognosis of NSCLC through using real-time quantitative PCR. Then, 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide assay and flow cytometry illustrated that knocking down LINC01214 restrained cell proliferation and promoted apoptosis in A549 and H1299 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!