A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting Virological Response to HIV Treatment Over Time: A Tool for Settings With Different Definitions of Virological Response. | LitMetric

Objective: Definitions of virological response vary from <50 up to 1000 copies of HIV-RNA/mL. Our previous models estimate the probability of HIV drug combinations reducing the viral load to <50 copies/mL, with no indication of whether higher thresholds of response may be achieved. Here, we describe the development of models that predict absolute viral load over time.

Methods: Two sets of random forest models were developed using 50,270 treatment change episodes from more than 20 countries. The models estimated viral load at different time points following the introduction of a new regimen from variables including baseline viral load, CD4 count, and treatment history. One set also used genotypes in their predictions. Independent data sets were used for evaluation.

Results: Both models achieved highly significant correlations between predicted and actual viral load changes (r = 0.67-0.68, mean absolute error of 0.73-0.74 log10 copies/mL). The models produced curves of virological response over time. Using failure definitions of <100, 400, or 1000 copies/mL, but not 50 copies/mL, both models were able to identify alternative regimens they predicted to be effective for the majority of cases where the new regimen prescribed in the clinic failed.

Conclusions: These models could be useful for selecting the optimum combination therapy for patients requiring a change in therapy in settings using any definition of virological response. They also give an idea of the likely response curve over time. Given that genotypes are not required, these models could be a useful addition to the HIV-TRePS system for those in resource-limited settings.

Download full-text PDF

Source
http://dx.doi.org/10.1097/QAI.0000000000001989DOI Listing

Publication Analysis

Top Keywords

virological response
12
definitions virological
8
predicting virological
4
response hiv
4
hiv treatment
4
treatment time
4
time tool
4
tool settings
4
settings definitions
4
response objective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!