A 5-bromo-2'-deoxyuridine (BUdR)-tolerant derivative of a thymidine (TdR)-requiring strain of Bacillus subtilis was used to examine the effect of BUdR, an analogue of TdR, on sporulation. At a TdR:BUdR ratio which had little effect on growth, sporulation was inhibited if cells were exposed to BUdR during the period of DNA synthesis at the onset of the process. Cells recovered from BUdR inhibition of sporulation if the analogue was removed and DNA replication allowed to continue with TdR alone. BUdR prolonged the period of DNA synthesis during sporulation and experiments with chloramphenicol suggested that this was due in part to unscheduled initiation of new rounds of replication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/00221287-132-2-493 | DOI Listing |
Food Technol Biotechnol
December 2024
University of Zagreb Faculty of Agriculture, Division of Phytomedicine, Department of Plant Pathology, Svetošimunska 25, 10000 Zagreb, Croatia.
Research Background: The use of plant extracts in the biological control of fungal plant diseases can reduce the use of fungicides and residues in food by effectively suppressing mycotoxigenic microorganisms. The focus of interest is therefore finding plant extracts that have antifungal properties and are not toxic to organisms, so that they can be used for the biological control of economically important phytopathogenic fungi such as . Species of the genus are considered economically important pathogenic fungi of numerous agricultural crops, which not only cause significant losses but also produce mycotoxins that reach consumers through food.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
In baker's yeast, genes encoding ribosomal proteins often exist as duplicate pairs, typically with one 'major' paralog highly expressed and a 'minor' less expressed paralog that undergoes controlled expression through reduced splicing efficiency. In this study, we investigate the regulatory mechanisms controlling splicing of the minor paralog of the uS4 protein gene (RPS9A), demonstrating that its splicing is repressed during vegetative growth but upregulated during meiosis. This differential splicing of RPS9A is mediated by two transcription factors, Rim101 and Taf14.
View Article and Find Full Text PDFFoods
December 2024
College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China.
Spore-forming bacterial species pose a serious threat to food plants and healthcare facilities that use high-temperature processing and sterilizing techniques to sanitize medical equipment and food items. These severe processing conditions trigger sporulation, which is the process by which spore-forming bacteria, such as those of the and species, begin to produce spores, which are extremely resilient entities capable of withstanding adverse environmental circumstances. Additionally, these spores are resistant to a wide range of disinfectants and antibacterial therapies, such as hydrolytic enzymes, radiation, chemicals, and antibiotics.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
College of Forestry, Gansu Agricultural University, Lanzhou 730070, China.
Wolfberry () is a vital economic tree species in northwest China, but root rot caused by occurs frequently, which seriously endangers the quality and yield of wolfberry. In this study, potato glycoside alkaloids (PGAs), a plant-derived active substance, were used as materials to explore its inhibitory effect on . By analyzing the changes of reactive oxygen species (ROS) level, antioxidant capacity, and apoptosis, the role of PGAs-mediated oxidative stress in inducing apoptosis of was revealed.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Center of Agricultural, Environmental and Biological Sciences, Federal University of Recôncavo of Bahia (UFRB), Cruz das Almas 44380-000, BA, Brazil.
Sisal () bole rot caused by is the main phytosanitary problem affecting sisal in the Brazilian semi-arid region. The aim of this study was to evaluate spp. as biocontrol agents for sisal bole rot.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!