Protective effects of Myrica rubra flavonoids against hypoxia/reoxygenation-induced cardiomyocyte injury via the regulation of the PI3K/Akt/GSK3β pathway.

Int J Mol Med

Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P.R. China.

Published: May 2019

Myrica rubra is well known for its delicious taste and high nutritional value. The present study investigated the potential protective effects and mechanisms of M. rubra flavonoids (MRF) extract on isoproterenol (ISO)‑induced myocardial injury in rats and hypoxia/reoxygenation (H/R) injury in H9c2 cardiomyocytes. An in vivo study revealed that MRF decreased serum cardiac enzyme levels, ameliorated pathological heart alterations and increased the antioxidant potential. The in vitro investigation demonstrated that MRF inhibited cell death, reactive oxygen species (ROS) accumulation, mitochondrial membrane depolarization, apoptosis rate and caspase‑3 activation and enhanced the Bcl‑2/Bax ratio during H/R injury. These effects were accompanied by the phosphorylation of protein kinase B (Akt) and glycogen synthase kinase (GSK)‑3β. Further mechanism studies demonstrated that LY294002, a specific inhibitor of phosphoinositide 3‑kinase (PI3K), abolished the MRF‑mediated cardioprotection against H/R‑induced apoptosis and ROS overproduction. Collectively, these results suggested that MRF exerts cardioprotective effects by attenuating oxidative damage and cardiomyocyte apoptosis most likely via a PI3K/Akt/GSK3β‑dependent mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6443338PMC
http://dx.doi.org/10.3892/ijmm.2019.4131DOI Listing

Publication Analysis

Top Keywords

protective effects
8
h/r injury
8
effects myrica rubra
4
myrica rubra flavonoids
4
flavonoids hypoxia/reoxygenation-induced
4
hypoxia/reoxygenation-induced cardiomyocyte
4
injury
4
cardiomyocyte injury
4
injury regulation
4
regulation pi3k/akt/gsk3β
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!