It is of great interest to design nanomaterial biosensors that can selectively detect target molecules without the use of fragile and expensive antibodies. Here, we report a chemical approach to modulate the response selectivity of graphene oxide (GO) fluorescence for neurotransmitters, in order to design an optical biosensor for the selective detection of dopamine without using antibodies. To this end, GO was functionalized with six different amino acids, followed by the immobilization of seven metal ions, resulting in the production of forty-two different GO nanohybrids (denoted GO-AA-MI derivatives). The fluorescence response of GO-AA-MI derivatives to dopamine, norepinephrine, and epinephrine was modulated by varying the type of amino acids and metal ions introduced. Tyrosine-modified GO with Fe2+ ions (GO-Y-Fe) exhibited selective quenching of its fluorescence in the presence of dopamine whereas lysine-modified GO with Au3+ ions (GO-K-Au) showed a selective increase in fluorescence upon addition of norepinephrine. The GO-Y-Fe sensor developed was able to differentiate dopamine from similar structures of norepinephrine and epinephrine, as well as abundant interferents such as ascorbic acid and uric acid, without the use of antibodies. In addition, the GO-Y-Fe sensor successfully detected dopamine secreted from living neuron cells in a rapid and simple manner.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr00643eDOI Listing

Publication Analysis

Top Keywords

response selectivity
8
selectivity graphene
8
graphene oxide
8
oxide fluorescence
8
amino acids
8
metal ions
8
go-aa-mi derivatives
8
norepinephrine epinephrine
8
go-y-fe sensor
8
fluorescence
5

Similar Publications

Cognitive load stimulates neural activity, essential for understanding the brain's response to stress-inducing stimuli or mental strain. This study examines the feasibility of evaluating cognitive load by extracting, selection, and classifying features from electroencephalogram (EEG) signals. We employed robust local mean decomposition (R-LMD) to decompose EEG data from each channel, recorded over a four-second period, into five modes.

View Article and Find Full Text PDF

Exposure to vanadium (V) occurs through the ingestion of contaminated water, polluted soil, V-containing foods and medications, and the toxicity and absorption during the small intestine phase after oral ingestion play crucial roles in the ultimate health hazards posed by V. In this study, the human colon adenocarcinoma (Caco-2) cells were selected as an intestinal absorption model to investigate the uptake and cytotoxicity of vanadyl sulfate (VOSO) and sodium orthovanadate (NaVO). Our results confirmed the cytotoxic effects of V(IV) and V(V) and revealed a greater toxicity of V(IV) than V(V) towards Caco-2 cells.

View Article and Find Full Text PDF

Upregulation of Cyclin E1 and subsequent activation of CDK2 accelerates cell cycle progression from G1 to S phase and is a common oncogenic driver in gynecological malignancies. WEE1 kinase counteracts the effects of Cyclin E1/CDK2 activation by regulating multiple cell cycle checkpoints. Here we characterized the relationship between Cyclin E1/CDK2 activation and sensitivity to the selective WEE1 inhibitor azenosertib.

View Article and Find Full Text PDF

Afforestation projects on saline land, using Eucalyptus trees and ectomycorrhizal fungi, are crucial for restoring affected areas and promoting ecological and economic benefits, particularly in saline-affected areas. This study was conducted to isolate Pisolithus sp. and estimate its potential to improve the growth performance of Eucalyptus globulus seedlings under salt-stress conditions.

View Article and Find Full Text PDF

Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!