Objectives: To investigate neurochemical abnormalities in the left and right ventrolateral prefrontal cortex (VLPFC) and anterior cingulate cortex (ACC) of youth at risk for bipolar disorder using proton magnetic resonance spectroscopy before and after their first mood episode.

Methods: Children and adolescents offspring of parents with bipolar I disorder (at-risk group, n = 117) and matched healthy controls (HC group, n = 61) were recruited at the University of Cincinnati. At-risk subjects had no lifetime major mood and psychotic disorders at baseline, and were followed up every 4 months to monitor for development of a major depressive, manic, hypomanic, or mixed mood episode. Levels of N-acetyl-aspartate (NAA), phosphocreatine plus creatine (PCr + Cr), choline-containing compounds, myo-inositol, and glutamate were determined using LCModel and corrected for partial volume effects.

Results: There were no baseline differences in metabolite levels for any of the brain regions between at-risk and HC youth. Nineteen at-risk subjects developed a first mood episode during follow-up. Survival analyses showed that baseline PCr + Cr levels in the left VLPFC significantly predicted a mood episode during follow-up in the at-risk group (HR: 0.47, 95% CI: 0.27-0.82, P = 0.008). There were no longitudinal changes in metabolites levels in the VLPFC and ACC before and after a mood episode in at-risk subjects.

Conclusions: We found no evidence for abnormal proton spectroscopy metabolite levels in the VLPFC and ACC of at-risk youth, prior and after the development of their first mood episode. Preliminary findings of association between baseline PCr + Cr levels in the left VLPFC and risk to develop a mood episode warrant further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/bdi.12770DOI Listing

Publication Analysis

Top Keywords

mood episode
28
bipolar disorder
12
mood
9
proton spectroscopy
8
prefrontal cortex
8
youth risk
8
risk bipolar
8
at-risk group
8
at-risk subjects
8
metabolite levels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!