Sub-lethal effects of lufenuron exposure on spotted bollworm Earias vittella (Fab): key biological traits and detoxification enzymes activity.

Environ Sci Pollut Res Int

Hube Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People's Republic of China.

Published: May 2019

Spotted bollworm, Earias vittella, is one of the most serious and devastating insect pests of vegetables and cotton. Currently, insecticides are necessary for its control in nearly all crop systems. In this paper, we evaluate the sub-lethal effects of lufenuron on biological traits and activity of detoxification enzymes: cytochrome P450 monooxygenases, esterase, and glutathione S-transeferase (GST) in second instar larvae of E. vittella. Results showed that sub-lethal concentrations (LC and LC of lufenuron), prolonged larval period (at LC = 13.86 ± 1.22 day, LC = 13.14 ± 1.15 day, control = 12.28 ± 0.7), pupal duration (LC = 11.1 ± day, LC = 11.8 ± 0.28 day, control = 9.40 ± 0.52), and extended mean generation time (LC = 27.3 ± 0.43 LC = 29.0 ± 1.19 day, control = 26.0 ± 0.65). Sub-lethal exposure significantly prolonged the pre-adult stage, decreased pupal weight, and reduced adult longevity in the parent (F) and F generation. Moreover, the fecundity and egg viability were significantly lowered in parental and F generations at both sub-lethal concentrations compared to the control. While no significant effects were noted on reproductive parameters such as the intrinsic rate of increase (r), finite rate of increase (λ), and net reproduction rate (R) of F generation when compared to the control. Only mean generation time (T) in F at LC was significantly longer compared to the LC and control (LC = 3.79 ± 0.37, LC = 32.28 ± 1.55 day, control = 29.79 ± 0.55). Comparatively, the activities of cytochrome P450 monooxygenases and esterase were higher than GST in treated populations. The increase in resistance development against insecticides may possibly because of elevated activity of detoxification enzymes. These results provide useful information for monitoring resistance in integrated pest management (IPM) programs for E. vittella.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-019-04655-8DOI Listing

Publication Analysis

Top Keywords

detoxification enzymes
12
compared control
12
sub-lethal effects
8
effects lufenuron
8
spotted bollworm
8
bollworm earias
8
earias vittella
8
biological traits
8
activity detoxification
8
cytochrome p450
8

Similar Publications

The global issue of insecticide resistance among pests is a major concern. Ectropis grisescens Warren (Lepidoptera: Geometridae), is a highly destructive leaf-eating pest distributed in tea plantations throughout China and Japan, and has exhibited resistance to various insecticides. Recent studies suggest that insect symbionts play a role in influencing insecticide resistance, however, their specific involvement in E.

View Article and Find Full Text PDF

Unraveling the impact of PFOA toxicity on Zostera marina using a multi-omics approach: Insights from growth, physiological, transcriptomic, and metabolomic signatures.

J Hazard Mater

December 2024

Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, PR China; Joint Research Center for Conservation, Restoration & Sustainable Utilization of Marine Ecology, Ocean University of China-China State Shipbuilding Corporation Environmental Development Co., Ltd., Qingdao, PR China; Observation and Research Station of Yellow-Bohai Sea Temperate Seagrass Bed Ecosystem, Ministry of Natural Resources, Qingdao, PR China. Electronic address:

Perfluorooctanoic acid (PFOA), an anthropogenic organic pollutant known for its persistence, resistance to degradation, and toxicity, has raised significant concerns about its potential ecological impacts. Zostera marina, a common submerged seagrass species in temperate offshore areas, is highly vulnerable to pollutant stressors. However, the impact of PFOA on Z.

View Article and Find Full Text PDF

Laboratory-simulated marine heatwave enhances physiological damage to mussels exposed to titanium dioxide nanoparticles by disrupting the gut-hepatopancreas axis.

J Hazard Mater

December 2024

International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

The aggregation state of nano-TiO in the environment is altered under marine heatwaves (MHWs), thus affecting its bioavailability and toxicity to the marine organisms. Here, we investigated the toxic mechanisms and effects of nano-TiO on gut-hepatopancreas axis health of Mytilus coruscus exposed to 25 and 250 μg/L of nano-TiO under laboratory-simulated MHW. Compared with the control conditions or post-MHW cooling phase, prolonged MHW exposure significantly inhibited digestive function, decreased immune-related enzymes activities, and caused neurotoxicity in the mussels.

View Article and Find Full Text PDF

Efficient Expression and Activity Optimization of Manganese Peroxidase for the Simultaneous Degradation of Aflatoxins AFB, AFB, AFG, and AFG.

J Agric Food Chem

January 2025

School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.

Aflatoxins (AFs), notorious mycotoxins that pose significant risks to human and animal health, make biodegradation extremely crucial as they offer a promising approach to managing and reducing their harmful impacts. In this study, we identified a manganese peroxidase from (Mnp) through protein similarity analysis, which has the capability to degrade four AFs (AFB, AFB, AFG, and AFG) simultaneously. The gene encoding this enzyme was subject to codon optimization, followed by cold shock induction expression using the pColdII vector, leading to the soluble expression of manganese peroxidase (Mnp) in .

View Article and Find Full Text PDF

Mixed-species Pseudomonas biofilms: a novel and sustainable strategy for malachite green dye decolorization and detoxification.

Folia Microbiol (Praha)

January 2025

Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Salt Lake City, Kolkata, West Bengal, 700091, India.

This study investigated the application of mixed biofilms formed by two Pseudomonas strains (NAA22 and NAA23) for bio-decolorization of malachite green (MG) dye. The isolated strains displayed biofilm formation and MG decolorization capabilities. Mixed biofilms exhibited significantly greater biofilm formation and MG decolorization (94.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!