Objective: The aetiology of Behçet's disease (BD), known as a systemic vasculitis, is not completely understood. Increasing evidence suggests that aberrant DNA methylation may contribute to the pathogenesis of BD. The aim of this epigenome-wide association study was to identify BD-associated methylation loci in Han Chinese.

Methods: Genome-wide DNA methylation profiles were compared between 60 BD patients and 60 healthy controls using the Infinium Human Methylation 450 K Beadchip. BD-associated methylation loci were validated in 100 BD patients and 100 healthy controls by pyrosequencing. Gene expression and cytokine production was quantified by real-time PCR and ELISA.

Results: A total of 4332 differentially methylated CpG sites were associated with BD. Five differentially methylated CpG sites (cg03546163, cg25114611, cg20228731, cg23261343 and cg14290576) revealed a significant hypomethylation status across four different genes (FKBP5, FLJ43663, RUNX2 and NFIL3) and were validated by pyrosequencing. Validation results showed that the most significant locus was located in the 5'UTR of FKBP5 (cg03546163, P = 3.81E-13). Four CpG sites with an aberrant methylation status, including cg03546163, cg25114611, cg23261343 and cg14290576, may serve as a diagnostic marker for BD (area under the receiver operating curve curve = 83.95%, 95% CI 78.20, 89.70%). A significantly inverse correlation was found between the degree of methylation at cg03546163 as well as cg25114611 and FKBP5 mRNA expression. Treatment with a demethylation agent, 5-Aza-2'-deoxycytidine resulted in an increase of FKBP5 mRNA expression and a stimulated IL-1β production.

Conclusion: Our findings suggest that aberrant DNA methylation, independently of previously known genetic variants, plays a vital role in the pathogenesis of BD.

Trial Registration: Chinese Clinical Trial Registry, chictr.org.cn, ChiCTR-CCC-12002184.

Download full-text PDF

Source
http://dx.doi.org/10.1093/rheumatology/kez043DOI Listing

Publication Analysis

Top Keywords

methylation loci
12
dna methylation
12
cpg sites
12
methylation
9
epigenome-wide association
8
association study
8
loci han
8
aberrant dna
8
bd-associated methylation
8
healthy controls
8

Similar Publications

Introduction: Whole genome methylation sequencing (WGMS) in blood identifies differential DNA methylation in persons with late-onset dementia due to Alzheimer's disease (AD) but has not been tested in persons with mild cognitive impairment (MCI).

Methods: We used WGMS to compare DNA methylation levels at 25,244,219 CpG loci in 382 blood samples from 99 persons with MCI, 109 with AD, and 174 who are cognitively unimpaired (CU).

Results: WGMS identified 9756 differentially methylated positions (DMPs) in persons with MCI, including 1743 differentially methylated genes encoding proteins in biological pathways related to synapse organization, dendrite development, and ion transport.

View Article and Find Full Text PDF

Genetic evidence for the causal effects of air pollution on the risk of respiratory diseases.

Ecotoxicol Environ Saf

December 2024

Sleep Medicine Center, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, National Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510160, China. Electronic address:

Background: Epidemiological studies have consistently demonstrated a robust association between long-term exposure to air pollutants and respiratory diseases. However, establishing causal relationships remains challenging due to residual confounding in observational studies. In this study, Mendelian randomization (MR) analysis was used to explore the causal and epigenetic relationships between various air pollutants and common respiratory diseases.

View Article and Find Full Text PDF

Heterodisomy in the locus is also a cause of pseudohypoparathyroidism type 1B (iPPSD3).

Front Endocrinol (Lausanne)

December 2024

Rare Disease Research Group, Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, Vitoria-Gasteiz, Spain.

Objective: To identify the genetic cause underlying the methylation defect in a patient with clinical suspicion of PHP1B/iPPSD3.

Design: Imprinting is an epigenetic mechanism that allows the regulation of gene expression. The locus is one of the loci within the genome that is imprinted.

View Article and Find Full Text PDF

Background: Considering that the treatment of gout is poor, we performed a Mendelian randomization (MR) study to identify candidate biomarkers and therapeutic targets for gout.

Methods: A drug-targeted MR study was performed for gout by integrating the gout genome-wide association studies (GWAS) summary data and cis expression quantitative trait loci of 2,633 druggable genes from multiple cohorts. Summary data-based Mendelian randomization (SMR) analyses based on transcript and protein levels were further implemented to validate the reliability of the identified potential therapeutic targets for gout.

View Article and Find Full Text PDF

Exploration of the mechanism of 5-Methylcytosine promoting the progression of hepatocellular carcinoma.

Transl Oncol

December 2024

Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China. Electronic address:

5-Methylcytosine (m5C) is a ubiquitous RNA modification that is closely related to various cellular functions. However, no studies have comprehensively demonstrated the role of m5C in hepatocellular carcinoma (HCC) progression. In this study, six pairs of HCC and adjacent tissue samples were subjected to methylated RNA immunoprecipitation sequencing to identify precise m5C loci.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!