High grade gliomas (HGG) comprise a heterogeneous group of brain malignancies with dismal prognosis. Current standard-of-care includes radiation, chemotherapy, and surgical resection when possible. Despite advances in each of these treatment modalities, survival rates for pediatric and adult HGG patients has remained largely unchanged over the course of several years. This is in stark contrast to the significant survival increases seen recently for a variety of hematological and other solid malignancies. The introduction and widespread use of immunotherapies have contributed significantly to these survival increases, and as such these therapies have been explored for use in the treatment of HGG. In particular, chimeric antigen receptor (CAR) T cell therapy has shown promise in clinical trials in HGG patients. However, unlike the tremendous success CAR T cell therapy has seen in B cell leukemia and lymphoma treatment, the success in HGG patients has been modest at best. This is largely due to the unique tumor microenvironment in the central nervous system, difficulty in accessing the tumor site, and heterogeneity in target antigen expression. The results of these features are poor CAR T cell proliferation, poor persistence, suboptimal cytokine secretion, and the emergence of antigen-loss tumor variants. These issues have called for the development of "next generation" CAR T cells designed to circumvent the barriers that have limited the success of current CAR T cell technologies in HGG treatment. Rapid advancements in gene editing technologies have provided several avenues for CAR T cell modification to enhance their efficacy. Among these are cytokine overexpression, gene knock-out and knock-in, targeting of multiple antigens simultaneously, and precise control of CAR expression and signaling. These "next generation" CAR T cells have shown promising results in pre-clinical models and may be the key to harnessing the full potential of CAR T cells in the treatment of HGG.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399104 | PMC |
http://dx.doi.org/10.3389/fonc.2019.00069 | DOI Listing |
J Hematol Oncol
January 2025
Bavarian Cancer Research Center (BZKF), R/R ALL Study Group, Bavaria, Germany.
Anti-CD19 chimeric antigen receptor T cells (CAR) are a well-established treatment option for children and young adults suffering from relapsed/refractory B-lineage acute lymphoblastic leukemia. Bridging therapy is used to control disease prior to start of lymphodepletion before CAR infusion and thereby improve efficacy of CAR therapy. However, the effect of different bridging strategies on outcome, side effects and response to CAR therapy is still poorly understood.
View Article and Find Full Text PDFNat Protoc
January 2025
Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
The clinical potential of current chimeric antigen receptor-engineered T (CAR-T) cell therapy is hampered by its autologous nature that poses considerable challenges in manufacturing, costs and patient selection. This spurs demand for off-the-shelf therapies. Here we introduce an ex vivo feeder-free culture method to differentiate gene-engineered hematopoietic stem and progenitor (HSP) cells into allogeneic invariant natural killer T (NKT) cells and their CAR-armed derivatives (CAR-NKT cells).
View Article and Find Full Text PDFBone Marrow Transplant
January 2025
Vanderbilt University Medical Center, Nashville, TN, USA.
Methods Cell Biol
January 2025
Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and LMU University Hospital, Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany. Electronic address:
Treatment with autologous chimeric antigen receptor (CAR)-modified T cells can achieve outstanding clinical response rates in heavily pretreated patients with B and plasma cell malignancies. However, relapses occur, and they limit the efficacy of this promising treatment approach. The complex GMP-compliant production and high treatment costs cause that CAR T cells cannot yet be used in a broad population.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
Background: Glucose deprivation inhibits T-cell metabolism and function. Glucose levels are low in the tumor microenvironment of solid tumors and insufficient glucose uptake limits the antitumor response of T cells. Furthermore, glucose restriction can contribute to the failure of chimeric antigen receptor T (CAR-T) cell therapy for solid tumors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!