In the present study, we characterized bacteriocin BaCf3, isolated and purified from BTSS3, and demonstrated its inhibitory potential on growth and biofilm formation of certain food spoilage bacteria and pathogens. Purification was by gel filtration chromatography and its molecular weight was 3028.422 Da after MALDI-TOF MS. The bacteriocin was highly thermostable withstanding even autoclaving conditions and pH tolerant (2.0-13.0). The bacteriocin was sensitive to oxidizing agent (DMSO) and reducing agent (DTT). The de novo sequence of the bacteriocin BaCf3 was identified and was found to be novel. The sequence analysis shows the presence of a disulphide linkage between C6 and C13. The microtitre plate assay proved that BaCf3 could reduce up to 80% biofilm produced by strong biofilm producers from food samples. In addition, BaCf3 did not show cytotoxicity on 3-TL3 cell line.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409291PMC
http://dx.doi.org/10.1007/s13205-019-1639-2DOI Listing

Publication Analysis

Top Keywords

highly thermostable
8
bacteriocin bacf3
8
bacf3
5
bacteriocin
5
bacf3 highly
4
thermostable bacteriocin
4
bacteriocin btss3
4
btss3 antagonistic
4
antagonistic food-borne
4
food-borne pathogens
4

Similar Publications

The green unicellular algae contains 12-13 carbonic anhydrases (CAs). For a long time, the two closely related α-CAs of the periplasmic membrane CAH1 and CAH2 were considered to be the CAs with the highest CO hydration activity. The recombinant protein α-CA CAH3 (rCAH3) from the thylakoid lumen obtained in the present study showed more than three times higher activity compared to CAH1 and more than 11 times higher compared to previous studies with rCAH3.

View Article and Find Full Text PDF

In-silico prediction of protein biophysical traits is often hindered by the limited availability of experimental data and their heterogeneity. Training on limited data can lead to overfitting and poor generalizability to sequences distant from those in the training set. Additionally, inadequate use of scarce and disparate data can introduce biases during evaluation, leading to unreliable model performances being reported.

View Article and Find Full Text PDF
Article Synopsis
  • Optimizing enzyme thermostability is crucial for protein science and industry, but combining multiple mutations can lead to inactivation, making traditional methods slow and inefficient.
  • Researchers developed an AI-driven method to enhance enzyme thermostability by efficiently recombining beneficial single-point mutations, using data from various mutant groups.
  • After two design rounds, the study achieved 50 combinatorial mutants with 100% success, including one exceptional mutant that significantly increased melting temperature and half-life, while also revealing complex interactions (epistasis) among mutations.
View Article and Find Full Text PDF

The thermostability and catalytic activity of GH11 xylanase XynASP from JOP 1030-1 were improved by systematically engineering the cord region. Ultimately, mutant DSM4 was developed through iterative combinations of mutations. Compared to the wild-type XynASP, DSM4 showed a 130.

View Article and Find Full Text PDF

Design of minibinder proteins specific to TNFR1.

Int J Biol Macromol

December 2024

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China; National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China; Hubei Jiangxia Laboratory, Wuhan, Hubei 430200, China. Electronic address:

TNFα inhibitors have been successfully developed and used in the clinical treatment of autoimmune disorders. However, the use of TNFα blockade may be accompanied by side effects. The cases of bacterial and viral infections, lymphoproliferative disorders, and anti-TNFα-induced lupus, have been reported among the rheumatoid arthritis or Crohn's disease patients treated with TNFα blockers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!