Simultaneous laccase production and transformation of bisphenol-A and triclosan using .

3 Biotech

1Enzyme Biotechnology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana 124001 India.

Published: April 2019

New age micro-pollutants, bisphenol-A (BPA) and triclosan (TCA), known for their carcinogenic effects in living organisms can effectively be removed from water using laccase from . Laccase was produced from JSRK13 in both submerged and solid-state fermentation (SmF and SSF) conditions. In SmF, JSRK13 gave the maximum production of laccase on the 10th day with an activity of 22 U mL, whereas, in SSF 185 U g of the enzyme was produced on the 17th day. Maximum production of laccase was observed with Parthenium as substrate. Parthenium, with a particle size of 3-5 mm having 60% moisture was found to be a suitable substrate for laccase production and simultaneous transformation (LPST) of BPA in a synergistic manner. A one-step concentration using 85% ammonium sulphate followed by dialysis was sufficient to give 6.7-fold purification of laccase from the crude culture filtrate. Transformation of BPA was achieved in both SmF and SSF conditions along with the production of laccase, whereas TCA was degraded with free enzyme only. Above 90% of BPA (55-5 mg L) was degraded using the LPST strategy with HBT acting as a mediator in the reaction. LPST strategy did not work for TCA as it completely inhibits the growth of JSRK13. TCA was degraded up to 75% (1.5-0.375 mg L) by the free enzyme. Our study of simultaneous laccase production and transformation proved to be efficacious in case of BPA. The results indicate that industrial and sewage wastewater containing BPA can potentially be treated with JSRK13 laccase. The described strategy can further be used to develop a bioprocess which can work both on solid and liquid wastes containing BPA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403270PMC
http://dx.doi.org/10.1007/s13205-019-1648-1DOI Listing

Publication Analysis

Top Keywords

laccase production
12
production laccase
12
laccase
9
simultaneous laccase
8
production transformation
8
smf ssf
8
ssf conditions
8
maximum production
8
tca degraded
8
free enzyme
8

Similar Publications

Fungal lignocellulolytic enzymes: an in silico and full factorial design approach.

World J Microbiol Biotechnol

January 2025

Graduate Program in Bioscience Technologies, Universidade Tecnológica Federal do Paraná, Toledo, Paraná, Brazil.

Efficient degradation of lignocellulosic biomass is key for the production of value-added products, contributing to sustainable and renewable solutions. This study employs a two-step approach to evaluate lignocellulolytic enzymes of Ceratocystis paradoxa, Colletotrichum falcatum, and Sporisorium scitamineum. First, an in silico genomic analysis was conducted to predict the potential enzyme groups produced by these fungi.

View Article and Find Full Text PDF

Efforts to reduce the impact of chemical processes on the environment are leading to a shift to enzymatic alternatives, with laccases standing out for their versatile substrate oxidation capabilities. This study addresses the improvement of biocatalytic reactions by deep eutectic solvents (DES), in particular DES-based aqueous two-phase systems (ATPS) for the extraction of biomolecules. Continuous laccase extraction from crude samples was achieved using a DES-based ATPS, which was first optimized in a batch extractor and later intensified in a microextractor.

View Article and Find Full Text PDF

[Directed evolution improves the catalytic activity of laccase in papermaking].

Sheng Wu Gong Cheng Xue Bao

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, Hubei, China.

As a biocatalyst, laccase has been widely studied and applied in the papermaking industry. However, the low catalytic efficiency and poor stability of natural laccase limit its application in the pulping process. To develop the laccase with high activity and strong tolerance, we carried out directed evolution for modification of the laccase derived from and screened out the mutants F282L/F306L and Q275P from the random mutant library by high-throughput screening.

View Article and Find Full Text PDF

LACCASE35 Enhances Lignification and Resistance Against Pseudomonas syringae pv. actinidiae Infection in Kiwifruit.

Plant Physiol

January 2025

Anhui Key Laboratory for Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, P.R.  China.

Kiwifruit bacterial canker, a highly destructive disease caused by Pseudomonas syringae pv. actinidiae (Psa), seriously affects kiwifruit (Actinidia spp.) production.

View Article and Find Full Text PDF

Exploiting CotA laccase from Antarctic Bacillus sp. PAMC28748 for efficient mediator-assisted dye decolorization and ABTS regeneration.

Chemosphere

January 2025

Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea; Genome-based Bio-IT Convergence Institute, Asan, 31460, Republic of Korea; Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, 31460, Republic of Korea; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, 31460, Republic of Korea. Electronic address:

Laccases are of particular interest in addressing environmental challenges, such as the degradation of triphenylmethane (TPM) dyes, including crystal violet (CV) and Coomassie Brilliant Blue (CBB), which are commonly used in SDS-PAGE for protein visualization. However, these dyes present significant environmental concerns due to their resistance to degradation, which makes their removal from industrial wastewater a major challenge. To address this, the current study investigates the potential of a novel CotA laccase derived from Bacillus sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!