A novel approach for increasing transformation efficiency in DH5α cells using silver nanoparticles.

3 Biotech

Department of Plant Biotechnology, College of Agriculture, Vellayani, Thiruvananthapuram, Kerala 695522 India.

Published: March 2019

The present study is the first report on the application of silver nanoparticles for efficient bacterial transformation. EC50 value of 100 nm silver nanoparticles against DH5α cells was recorded as 4.49 mg L in toxicity assay. Competency induction in DH5α cells by treatment with 100 nm silver nanoparticles at a concentration of 1 mg L for 60 min and transformation using three plasmid vectors of different sizes, viz. pUC18, pBR322 and pCAMBIA resulted in tenfold increase in the bacterial transformation efficiency, i.e. 8.3 × 10, 8.0 × 10 and 7.9 × 10 cfu ng of DNA, respectively, even without heat shock compared to the conventional chemical method using 0.1 M calcium chloride (2.3 × 10 cfu ng of DNA).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6397303PMC
http://dx.doi.org/10.1007/s13205-019-1640-9DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
16
dh5α cells
12
transformation efficiency
8
bacterial transformation
8
100 nm silver
8
novel approach
4
approach increasing
4
transformation
4
increasing transformation
4
efficiency dh5α
4

Similar Publications

Micro-Electro Nanofibrous Dressings Based on PVDF-AgNPs as Wound Healing Materials to Promote Healing in Active Areas.

Int J Nanomedicine

January 2025

Department of Burns and Plastic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.

Purpose: The purpose of this study is to develop an innovative solution for chronic wounds in high-mobility areas, such as joints, where conventional treatments are hindered by passive healing mechanisms and the need for immobilization. By designing a micro-electro-Nanofiber dressing composed of piezoelectric polyvinylidene fluoride (PVDF) integrated with antimicrobial silver nanoparticles (AgNPs), this research aims to address the dual challenges of promoting effective wound healing and maintaining joint mobility.

Methods: Herein, we developed a novel micro-electro-Nanofiber dressing using electrospinning technology, incorporating polyvinylidene fluoride (PVDF) with silver nanoparticles (AgNPs).

View Article and Find Full Text PDF

Nanoparticles in gynecologic cancers: a bibliometric and visualization analysis.

Front Oncol

January 2025

Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.

Background: Gynecological cancers are characterized by uncontrolled cell proliferation within the female reproductive organs. These cancers pose a significant threat to women's health, impacting life expectancy, quality of life, and fertility. Nanoparticles, with their small size, large surface area, and high permeability, have become a key focus in targeted cancer therapy.

View Article and Find Full Text PDF

Herein, we provide insights into the size-dependent interactions of silver nanoparticles (AgNPs) with urease and their implications for enzyme inhibition. AgNPs with a size of 5 nm exhibited the strongest binding affinity of 66 nM, resulting in significant enzyme attachment, interfering enzyme conformation, and a consequent loss of activity. Mid-sized AgNPs, , 20 and 50 nm, exhibited binding affinities of 712 and 616 nM, causing only slight structural alterations.

View Article and Find Full Text PDF

Cellulose nanofiber-reinforced antimicrobial and antioxidant multifunctional hydrogel with self-healing, adhesion for enhanced wound healing.

Carbohydr Polym

March 2025

College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China.

Current conventional wound dressings used for wound healing are often characterized by restricted bioactivity and devoid of multifunctionality resulting in suboptimal treatment and prolonged healing. Despite recent advances, the simultaneous incorporation of excellent flexibility, good mechanical performance, self-healing, bioactivity, and adhesion properties into the dressings without complicating their efficacy while maintaining simple synthesis remains a grand challenge. Herein, we effectively synthesized hybrid hydrogels of cellulose nanofiber (CNF), polyvinyl alcohol (PVA), and curcumin-modified silver nanoparticles (cAg) through a one-step synthesis method based on hydrogen bonds, dynamic boronic ester bonds, and coordinate covalent bonds.

View Article and Find Full Text PDF

New insights into chitosan-Ag nanocomposites synthesis: Physicochemical aspects of formation, structure-bioactivity relationship and mechanism of antioxidant activity.

Int J Biol Macromol

January 2025

Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea. Electronic address:

Herein, a novel approach to the controlled formation of chitosan-Ag nanocomposites (NCs) with different structures and tunable chemical/biological properties was proposed. The chitosan-Ag NCs were obtained using hydrothermal synthesis and varying the concentrations of components. The hypothesis of chitosan-Ag NC synthesis using polysaccharide coils as a "microreactor" system was confirmed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!