Genetically encoded optical indicators of neuronal activity enable unambiguous recordings of input-output activity patterns from identified cells in intact circuits. Among them, genetically encoded voltage indicators (GEVIs) offer additional advantages over calcium indicators as they are direct sensors of membrane potential and can adeptly report subthreshold events and hyperpolarization. Here, we outline the major GEVI designs and give an account of properties that need to be carefully optimized during indicator engineering. While designing the ideal GEVI, one should keep in mind aspects such as membrane localization, signal size, signal-to-noise ratio, kinetics and voltage dependence of optical responses. Using ArcLight and derivatives as prototypes, we delineate how a probe should be optimized for the former properties and developed along other areas in a need-based manner. Finally, we present an overview of the GEVI engineering process and lend an insight into their discovery, delivery and diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399427 | PMC |
http://dx.doi.org/10.3389/fncel.2019.00053 | DOI Listing |
Front Biosci (Schol Ed)
December 2024
Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.
Background: Disruptions in proteostasis are recognized as key drivers in cerebro- and cardiovascular disease progression. Heat shock proteins (HSPs), essential for maintaining protein stability and cellular homeostasis, are pivotal in neuroperotection. Consequently, deepening the understanding the role of HSPs in ischemic stroke (IS) risk is crucial for identifying novel therapeutic targets and advancing neuroprotective strategies.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
December 2024
Polytechnic School, University of Vale do Itajaí (Univali), Itajaí, SC 88302-202, Brazil.
Background: Enhanced biological phosphorus removal (EBPR) systems utilize phosphorus-accumulating organisms (PAOs) to remove phosphorus from wastewater since excessive phosphorus in water bodies can lead to eutrophication. This study aimed to characterize a newly isolated PAO strain for its potential application in EBPR systems and to screen for additional biotechnological potential. Here, sequencing allowed for genomic analysis, identifying the genes and molecules involved, and exploring other potentials.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
December 2024
Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, 4000 Durban, South Africa.
Background: () is the most prominent bacterial pathogen that causes urinary tract infections (UTIs), and the rate of resistance to most used antibiotics is alarmingly increasing.
Methods: This study assessed the hostel gutters of two Nigerian universities, the University of Nigeria, Nsukka (UNN) and Kogi State University, Anyigba (KSU), for and its antimicrobial resistance genes (). Oxoid Chromogenic UTI agar was used to isolate uropathogenic (UPEC), identified using standard biochemical tests.
J Integr Neurosci
December 2024
Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.
Background: Heat shock proteins (HSPs) play a critical role in the molecular mechanisms of ischemic stroke (IS). A possible role for HSP40 family proteins in atherosclerosis progression has already been revealed; however, to date, molecular genetic studies on the involvement of genes encoding proteins of the HSP40 family in IS have not yet been carried out.
Aim: We sought to determine whether nine single nucleotide polymorphisms (SNPs) in genes encoding HSP40 family proteins (, , , , and ) are associated with the risk and clinical features of IS.
Heliyon
December 2024
Service de Toxicologie et Génopathies, CHU Lille, F-59000, Lille, France.
Next-generation sequencing has substantially transformed the genomic diagnosis of individuals affected by inherited renal disorders. Indeed, accurate and rapid diagnostic for patients with suspected genetic kidney diseases is not only important for prognosis and patient management but also for family counseling. Alport syndrome, a genetic disease primarily affecting the basement membrane, is characterized by hematuria, progressive kidney failure, hearing impairment, as well as ocular abnormalities and stems from mutations in genes encoding type IV collagen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!