Background: Thromboembolic events are a major cause of heart attacks and strokes. However, diagnosis of the location of high risk vascular clots is hampered by lack of proper technologies for their detection. We recently reported on bio-engineered fluorescent diamond-(NV)-Z~800nm (FNDP-(NV)) conjugated with bitistatin (Bit) and proven its ability to identify iatrogenic blood clots in the rat carotid artery in vivo by Near Infra-Red (NIR) monitored by In Vivo Imaging System (IVIS).
Purpose: The objective of the present research was to assess the in vivo biocompatibility of FNDP-(NV)-Z~800nm infused intravenously to rats. Multiple biological variables were assessed along this 12 week study commissioned in anticipation of regulatory requirements for a long-term safety assessment.
Methods: Rats were infused under anesthesia with aforementioned dose of the FNDP-(NV), while equal number of animals served as control (vehicle treated). Over the 12 week observation period rats were tested for thriving, motor, sensory and cognitive functions. At the termination of study, blood samples were obtained under anesthesia for comprehensive hematology and biochemical assays. Furthermore, 6 whole organs (liver, spleen, brain, heart, lung and kidney) were collected and examined ex vivo for FNDP-NV) via NIR monitored by IVIS and histochemical inspection.
Results: All animals survived, thrived (no change in body and organ growth). Neuro-behavioral functions remain intact. Hematology and biochemistry (including liver and kidney functions) were normal. Preferential FNDP-(NV) distribution identified the liver as the main long-term repository. Certified pathology reports indicated no outstanding of finding in all organs.
Conclusion: The present study suggests outstanding biocompatibility of FNDP-(NV)-Z~800nm after long-term exposure in the rat.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6391148 | PMC |
http://dx.doi.org/10.2147/IJN.S189048 | DOI Listing |
Anal Chem
January 2025
Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.
Real-time monitoring of the dynamics of cytosolic RNA-protein condensates, termed stress granules (SGs), is vital for understanding their biological roles in stress response and related disease treatment but is challenging due to the lack of simple and accurate methods. Compared with protein visualization that requires complex transfection procedures, direct RNA labeling offers an ideal alternative for tracking SG dynamics in living cells. Here, we propose a novel molecular design strategy to construct a near-infrared RNA-specific fluorescent probe () for tracking SGs in living cells.
View Article and Find Full Text PDFJ Food Sci
January 2025
Digital Agriculture, Food and Wine Research Group, School of Agriculture, Food and Ecosystem Science, Faculty of Science, The University of Melbourne, Melbourne, Victoria, Australia.
Fraud in alcoholic beverages through counterfeiting and adulteration is rising, significantly impacting companies economically. This study aimed to develop a method using near-infrared (NIR) spectroscopy (1596-2396 nm) through the bottle, along with machine learning (ML) modeling for beer authentication, quality traits, and control assessment. For this study, 25 commercial beers from different brands, styles, and three types of fermentation were used.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, P.R. China.
Currently, the study of cuproptosis focuses on the Cu-induced morphology changes in mitochondria (Mito), and the observation of the effect of endoplasmic reticulum (ER)-related Cu content on cuproptosis is relatively lacking. Herein, we have developed a hydroxyflavone (HF)-based NIR excited two-photon fluorescent probe, BHCO, that exhibits specific recognition of Cu with high resolution. BHCO-Cu (Cu2BC) can lead to DLAT protein aggregation, triggering cuproptosis.
View Article and Find Full Text PDFNatl Sci Rev
February 2025
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
Organic red/near-infrared (NIR) room-temperature phosphorescence (RTP) holds significant potential for autofluorescence-free bioimaging and biosensing due to its prolonged persistent luminescence and exceptional penetrability. However, achieving activatable red/NIR organic RTP probes with tunable emission in aqueous solution remains a formidable challenge. Here we report on aqueous organic RTP probes with red/NIR phosphorescence intensity and lifetime amplification.
View Article and Find Full Text PDFResearch (Wash D C)
January 2025
Research Center for Advanced Detection Materials and Medical Imaging Devices, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
Fluorescence imaging, a highly sensitive molecular imaging modality, is being increasingly integrated into clinical practice. Imaging within the second near-infrared biological window (NIR-II; 1,000 to 1,700 nm), also referred to as shortwave infrared, has received substantial attention because of its markedly reduced autofluorescence, deeper tissue penetration, and enhanced spatiotemporal resolution as compared to traditional near-infrared (NIR) imaging. Indocyanine green (ICG), a US Food and Drug Administration-approved NIR fluorophore, has long been used in clinical applications, including blood vessel angiography, vascular perfusion monitoring, and tumor detection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!