The rapid emergence of multiresistant microbial pathogens, dubbed superbugs, is a serious threat to human health. Extended spectrum beta lactamase (ESBL)-producing Escherichia coli is a superbug causing worldwide outbreaks, necessitating timely and accurate tracking of resistant strains. Accordingly, this study was designed to investigate the spread of ESBL-producing Escherichia coli isolates, to analyze the effect of different genotypic and phenotypic factors on in vitro resistance patterns, and to assess the diagnostic value of commonly used ESBL genetic markers. For that purpose, we cultured 250 clinical isolates and screened their susceptibility to beta-lactam antibiotics. Among 12 antibiotics screened, only imipenem seems to have remained resilient. We subsequently analyzed the ESBL phenotype of Escherichia coli isolates and examined potential associations between their resistance phenotypes and patient-related factors. ESBL genotyping of 198 multiresistant isolates indicated that 179 contained at least one bla gene. As we statistically dissected the data, we found associations between overall resistance and body site / type of disease. Additionally, we confirmed the diagnostic value of testing both bla and bla in providing better prediction of overall resistance. Finally, on sequencing the amplification products of detected bla genes, we discovered two novel variants, which we named bla and bla

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6414621PMC
http://dx.doi.org/10.1038/s41598-019-39730-0DOI Listing

Publication Analysis

Top Keywords

escherichia coli
16
clinical isolates
8
extended spectrum
8
spectrum beta
8
esbl-producing escherichia
8
coli isolates
8
associations resistance
8
bla bla
8
bla
6
isolates
5

Similar Publications

Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.

View Article and Find Full Text PDF

Magnolol (MG) and honokiol (HK) are bioactive compounds extracted from and trees with significant pharmacological properties, including antioxidant and antibacterial activity. However, their poor water solubility and low bioavailability limit the therapeutic potential. To address these limitations, this study aims to develop MG and HK formulations by co-electrospinning using custom-synthesized β-cyclodextrin-oligolactide (β-CDLA) derivatives.

View Article and Find Full Text PDF

Antimicrobial Activity of UV-Activated and Cysteamine-Grafted Polymer Foils Against Bacteria and Algae.

Polymers (Basel)

January 2025

Centre for Nanomaterials and Biotechnology, Faculty of Science, University of Jan Evangelista Purkyně, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic.

Surface modification of various polymer foils was achieved by UV activation and chemical grafting with cysteamine to improve surface properties and antimicrobial efficacy. UVC activation at 254 nm led to changes in surface wettability and charge density, which allowed the introduction of amino and thiol functional groups by cysteamine grafting. X-ray photoelectron spectroscopy (XPS) confirmed increased nitrogen and sulfur content on the modified surfaces.

View Article and Find Full Text PDF

As the demand for sustainable and innovative solutions in food packaging continues to grow, this study endeavors to introduce a comprehensive exploration of novel active materials. Specifically, we focus on characterizing polylactide-poly(ethylene glycol) (PLA/PEG) films filled with olive leaf extract (OLE; ) obtained via solvent evaporation. Examined properties include surface structure, thermal degradation and mechanical attributes, as well as antibacterial activity.

View Article and Find Full Text PDF

Calcium Phosphate (CaP) Composite Nanostructures on Polycaprolactone (PCL): Synergistic Effects on Antibacterial Activity and Osteoblast Behavior.

Polymers (Basel)

January 2025

Division of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Jeonbuk, Republic of Korea.

Bone tissue engineering aims to develop biomaterials that are capable of effectively repairing and regenerating damaged bone tissue. Among the various polymers used in this field, polycaprolactone (PCL) is one of the most widely utilized. As a biocompatible polymer, PCL is easy to fabricate, cost-effective, and offers consistent quality control, making it a popular choice for biomedical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!