Evolution of the thioredoxin system as a step enabling adaptation to oxidative stress.

Free Radic Biol Med

Department of Plant & Microbial Biology, University of California, Berkeley, 94720 CA, USA. Electronic address:

Published: August 2019

Thioredoxins (Trxs) are low-molecular-weight proteins that participate in the reduction of target enzymes. Trxs contain a redox-active disulfide bond, in the form of a WCGPC amino acid sequence motif, that enables them to perform dithiol-disulfide exchange reactions with oxidized protein substrates. Widely distributed across the three domains of life, Trxs form an evolutionarily conserved family of ancient origin. Thioredoxin reductases (TRs) are enzymes that reduce Trxs. According to their evolutionary history, TRs have diverged, thereby leading to the emergence of variants of the enzyme that in combination with different types of Trxs meet the needs of the cell. In addition to participating in the regulation of metabolism and defense against oxidative stress, Trxs respond to environmental signals-an ability that developed early in evolution. Redox regulation of proteins targeted by Trx is accomplished with a pair of redox-active cysteines located in strategic positions on the polypeptide chain to enable reversible oxidative changes that result in structural and functional modifications target proteins. In this review, we present a general overview of the thioredoxin system and describe recent structural studies on the diversity of its components.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2019.03.003DOI Listing

Publication Analysis

Top Keywords

thioredoxin system
8
oxidative stress
8
trxs
6
evolution thioredoxin
4
system step
4
step enabling
4
enabling adaptation
4
adaptation oxidative
4
stress thioredoxins
4
thioredoxins trxs
4

Similar Publications

The oxidative modification of specific cysteine residues to persulfides is thought to be the main way by which hydrogen sulfide (HS) exerts its biological and signaling functions. Therefore, protein persulfidation represents an important thiol-switching mechanism as other reversible redox post-translational modifications. Considering their reductase activity but also their connections with proteins that generate HS and its related molecules, the glutaredoxin (GRX) and thioredoxin (TRX)-reducing systems have potential dual roles in both protein persulfidation and depersulfidation.

View Article and Find Full Text PDF

Background: Oxidative damage has been implicated in multiple neurodegenerative diseases, including epilepsy. Selenium, in the form of selenoproteins is an integral part of the human antioxidant defense system. Though a relationship between the altered selenium levels and epilepsy has been reported, limited evidence is available about the expression pattern of selenoproteins in epileptic patients.

View Article and Find Full Text PDF

The small molecule peroxiredoxin mimetics restore growth factor signalings and reverse vascular remodeling.

Free Radic Biol Med

January 2025

Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea. Electronic address:

Epidithio-diketopiperazine (ETP) compound is the family of natural fungal metabolites that are known to exert diverse biological effects, such as immunosuppression and anti-cancer activity, in higher animals. However, an enzyme-like catalytic activity or function of the ETP derivatives has not been reported. Here, we report the generation of novel thiol peroxidase mimetics that possess peroxide-reducing activity through strategic derivatization of the core ETP ring structure.

View Article and Find Full Text PDF

Redox proteomics reveal a role for peroxiredoxinylation in stress protection.

Cell Rep

January 2025

Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain. Electronic address:

The redox state of proteins is essential for their function and guarantees cell fitness. Peroxiredoxins protect cells against oxidative stress, maintain redox homeostasis, act as chaperones, and transmit hydrogen peroxide signals to redox regulators. Despite the profound structural and functional knowledge of peroxiredoxins action, information on how the different functions are concerted is still scarce.

View Article and Find Full Text PDF

Variable lymphocyte receptors (VLRs) are the antigen receptors of jawless vertebrates such as lamprey. VLRs are of growing biotechnological interest for their ability to bind certain antigenic targets with higher affinity than traditional immunoglobulins. However, VLRs are disulfide-bonded proteins that are often challenging to produce requiring genetic modifications, fusion partners, non-scalable host cell lines or inclusion body formation and refolding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!