To assess the accuracy of remote, real-time mathematical simulations of wetness duration and air temperature, hourly measurements of wetness duration and air temperature at 18 sites in the United States and Canada from May to September 1995 were compared with simulations for these sites provided by SkyBit, Inc. SkyBit simulations of mean, maximum, and minimum daily air temperatures varied from on-site measurements by less than 0.7°C but underestimated the duration of wet periods by an average of 3.4 h/day. At five of six stations tested, SkyBit underestimates of wetness duration were significantly (P < 0.01) larger on days when no rain was measured than on rainy days, indicating that simulations of dew-period duration were much less accurate than simulations of rain-period duration. The vast majority of hours SkyBit misclassified as dry occurred either when entire wet periods were missed (59.3%) or when the onset of a wet period was detected late (28.4%). The results suggest that revision of SkyBit wetness-simulation models should focus on reducing error rates during dew events. In simulations using two disease-warning models, TOM-CAST and Melcast, with mean values of measured and SkyBit-simulated wetness duration, SkyBit-simulated values resulted in fewer and later fungicide spray advisories than did measured values. The magnitude of these impacts varied with the magnitude of the simulation errors and with differences in the models' decision rules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS.1997.81.7.825 | DOI Listing |
Langmuir
January 2025
School of Chemical Engineering, Department of Chemistry and Materials Science, Aalto University, Tietotie 3 Espoo 02150, Finland.
Superhydrophobic surfaces find applications in numerous biomedical scenarios, requiring the repellence of biofluids and biomolecules. Plastron, the trapped air between a superhydrophobic surface and a wetting liquid, plays a pivotal role in biofluid repellency. A key challenge, however, is the often short-lived plastron stability in biofluids and the lack of knowledge surrounding it.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, QLD 4111, Australia.
The evaporation dynamics of sessile droplets on re-entrant microstructures are critical for applications in microfluidics, thermal management, and self-cleaning surfaces. Re-entrant structures, such as mushroom-like shapes with overhanging features, trap air beneath droplets to enhance non-wettability. The present study examines the evaporation of a water droplet on silicon carbide (SiC) and silicon dioxide (SiO) re-entrant structures, focusing on the effects of material composition and solid area fraction on volume reduction, contact angle, and evaporation modes.
View Article and Find Full Text PDFBrain Res
January 2025
Department of Neurosurgery, Division of Functional and Integrative Medicine, Department of Neurosurgery, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan.
Laser speckle flowmetry (LSF) is a noninvasive tool for cerebral blood flow (CBF) measurement via a cranial bone window. LSF is influenced by various factors including the extent of removal of bone and dura mater and tissue wetness in the bone window. In this study, we aimed to characterize the effect of these conditions on LSF signals and identify optimal measurement conditions for CBF LSF measurements in rats.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; Institute of Process Engineering, Technische Universität Dresden, 01069 Dresden, Germany. Electronic address:
Hypothesis: The surface wettability influences the oversaturation-driven growth of gas bubbles on the surface via the contact angle. Larger contact angles on hydrophobic surfaces compared to hydrophilic ones lead to faster growth of bubbles nucleating at microcavities of identical size.
Experiments: Cylindric micro-cavities were etched in silicon wafers as nucleation sites.
Polymers (Basel)
November 2024
Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
In this study, we investigated the behaviors of epoxy composites reinforced with bamboo (BF) and hemp (HF) fibers. Both fibers were treated using dielectric barrier discharge (DBD) plasma for various durations (2.5 to 20 min).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!