Performance of two different constitutive models and microstructural evolution of GH4169 superalloy.

Math Biosci Eng

State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.

Published: January 2019

The hot compression tests of GH4169 superalloy were performed in the deformation temperature range of 970 to 1150 ℃ and at the strain rate range of 0.001 to 10 s⁻¹. The flow stress is dependent on temperature and strain rate. The flow stresses were respectively predicted by Arrhenius-type and artificial neural network (ANN) models, and the predicted flow stresses were compared with the experimental data. A processing map can be obtained using the dynamic material models (DMM). A three-dimensional (3D) FEM model was established to simulate the hot compression process of GH4169 superalloy. Investigation of the microstructure of the deformed specimen was carried out using theoretical analysis, experimental research and FEM simulation. And the FEM model of compression tests were verified by experimental data.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2019049DOI Listing

Publication Analysis

Top Keywords

gh4169 superalloy
12
hot compression
8
compression tests
8
strain rate
8
flow stresses
8
experimental data
8
fem model
8
performance constitutive
4
constitutive models
4
models microstructural
4

Similar Publications

GH4169 alloy, a nickel-based superalloy known for its excellent high temperature resistance, corrosion resistance, mechanical properties, and high-temperature tribological properties, is widely used in industrial applications, such as in gas turbines for space shuttles and rocket engines. This study addresses the issue of electrolyte product residue in the electrochemical machining process of a GH4169 alloy by utilizing a CHNaO-containing NaNO new mixed electrolyte. Comparative investigations of the electrochemical behavior and electrolyte product removal mechanisms at different concentrations of CHNaO additive in NaNO solutions were conducted.

View Article and Find Full Text PDF

A precise constitutive model is essential for capturing the deformation characteristics of the GH4169 superalloy in numerical simulations of thermal plastic forming processes. Hence, the aim of this study was to develop a precise modified constitutive model to describe the hot deformation behavior exhibited by the GH4169 superalloy. The isothermal cylindrical uniaxial compression tests of the GH4169 superalloy were carried out at temperatures of 950~1100 °C and strain rates of 0.

View Article and Find Full Text PDF

The effect of the active element yttrium and its content on the oxidation behavior of GH4169 Ni-based superalloy at extreme temperature was studied by isothermal oxidation experiments. The results show that the oxide scale of GH4169 alloy presents a multi-layer structure, in which the continuous and dense CrO oxide layer is located in the subouter layer (II layer) and the continuous Nb-rich layer is in the subinner layer (III layer). These layers can inhibit the diffusion of oxygen and alloying elements, preventing the further oxidation of the alloy.

View Article and Find Full Text PDF

GH4169 alloy/Inconel 718 is extensively utilized in aerospace manufacturing due to its excellent high temperature mechanical properties. Micro-structuring on the workpiece surface can enhance its properties further. Through-mask electrochemical micromachining (TMEMM) is a promising and potential processing method for nickel-based superalloys.

View Article and Find Full Text PDF

This paper develops a thermodynamic entropy-based life prediction model to estimate the low-cycle fatigue (LCF) life of the nickel-based superalloy GH4169 at elevated temperature (650 °C). The gauge section of the specimen was chosen as the thermodynamic system for modeling entropy generation within the framework of the Chaboche viscoplasticity constitutive theory. Furthermore, an explicitly numerical integration algorithm was compiled to calculate the cyclic stress-strain responses and thermodynamic entropy generation for establishing the framework for fatigue life assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!