Background: Gastric cancer is the third most lethal malignancy worldwide. A novel deep convolution neural network (DCNN) to perform visual tasks has been recently developed. The aim of this study was to build a system using the DCNN to detect early gastric cancer (EGC) without blind spots during esophagogastroduodenoscopy (EGD).
Methods: 3170 gastric cancer and 5981 benign images were collected to train the DCNN to detect EGC. A total of 24549 images from different parts of stomach were collected to train the DCNN to monitor blind spots. Class activation maps were developed to automatically cover suspicious cancerous regions. A grid model for the stomach was used to indicate the existence of blind spots in unprocessed EGD videos.
Results: The DCNN identified EGC from non-malignancy with an accuracy of 92.5 %, a sensitivity of 94.0 %, a specificity of 91.0 %, a positive predictive value of 91.3 %, and a negative predictive value of 93.8 %, outperforming all levels of endoscopists. In the task of classifying gastric locations into 10 or 26 parts, the DCNN achieved an accuracy of 90 % or 65.9 %, on a par with the performance of experts. In real-time unprocessed EGD videos, the DCNN achieved automated performance for detecting EGC and monitoring blind spots.
Conclusions: We developed a system based on a DCNN to accurately detect EGC and recognize gastric locations better than endoscopists, and proactively track suspicious cancerous lesions and monitor blind spots during EGD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1055/a-0855-3532 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!