Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this article, three computational intelligence (CI) models were developed to automatically detect anomalous behaviour in soil radon gas (Rn) time series data. Data were obtained at a fault line and analysed using three machine learning techniques with the aim at identifying anomalies in temporal radon data prompted by seismic events. Radon concentrations were modelled with corresponding meteorological and statistical parameters. This leads to the estimation of soil radon gas without and with meteorological parameters. The comparison between computed radon concentration and actual radon concentrations was used in finding radon anomaly based upon automated system. The anomaly in radon time series data could be considered due to noise or seismic activity. Findings of study show that under meticulously characterized environments, on exclusion of noise contribution, seismic activity is responsible for anomalous behaviour seen in radon time series data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvrad.2019.03.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!