Background Cystathionine γ-lyase enzyme, which is encoded by the CTH gene, is responsible for hydrogen sulfide (H2S) production in the endothelium. The CTH 1364 G>T polymorphism may alter the CTH expression and H2S bioavailability, thus leading to atherosclerosis and coronary artery disease (CAD). We examined the potential association of the CTH 1364 G>T polymorphism with CAD. Methods The CTH 1364 G>T polymorphism was determined in 178 coronary artery bypass grafting (CABG) patients and 156 non-atherosclerotic controls of Greek Caucasian origin using the PCR-RFLP method. Results No significant difference in the frequency of the CTH 1364 G>T genotypes (p = 0.281) and alleles (p = 0.265) was found between the CABG patients and controls. After conducting stratification according to sex, analysis showed a numerical difference in the CTH 1364 TT genotype frequency in female participants that did not reach statistical significance (16.3% and 8.5% in the CABG and controls, respectively, p = 0.26). The frequency of the CTH 1364 TT genotype between the male CABG patients and controls did not differ (p = 0.507). Conclusions The CTH 1364 G>T polymorphism was not associated with CAD in the studied population. However, interestingly, a higher - if not significantly so - CTH 1364 TT genotype frequency was present in female CABG patients compared with female controls. Larger studies are necessary to conclude on the potential overall or gender-driven association between CTH 1364 G>T gene polymorphism and CAD.

Download full-text PDF

Source
http://dx.doi.org/10.1515/dmpt-2018-0033DOI Listing

Publication Analysis

Top Keywords

cth 1364
40
1364 g>t
28
g>t polymorphism
20
cabg patients
16
cth
12
coronary artery
12
1364 genotype
12
0
10
artery disease
8
association cth
8

Similar Publications

Background Cystathionine γ-lyase enzyme, which is encoded by the CTH gene, is responsible for hydrogen sulfide (H2S) production in the endothelium. The CTH 1364 G>T polymorphism may alter the CTH expression and H2S bioavailability, thus leading to atherosclerosis and coronary artery disease (CAD). We examined the potential association of the CTH 1364 G>T polymorphism with CAD.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) has emerged as an important physiological and pathophysiological signaling molecule in the cardiovascular system influencing vascular tone, cytoprotective responses, redox reactions, vascular adaptation, and mitochondrial respiration. However, bioavailable levels of HS in its various biochemical metabolite forms during clinical cardiovascular disease remain poorly understood. We performed a case-controlled study to quantify and compare the bioavailability of various biochemical forms of HS in patients with and without cardiovascular disease (CVD).

View Article and Find Full Text PDF

Sinusoidal obstruction syndrome (SOS) is a severe complication of hematopoietic stem cell transplantation (HSCT) that can be fatal, often attributed to the conditioning regimen prior to HSCT. We evaluated the association of SOS risk with gene variants in cystathionase (CTH), an enzyme involved in glutathione synthesis, in 76 children receiving intravenous busulfan (Bu) before HSCT. Our results indicated an association with CTHc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!